{"title":"穿孔拱顶的寻形及比例样机的数字化制作","authors":"A. Bertetto, Federico Riberi","doi":"10.1515/cls-2021-0020","DOIUrl":null,"url":null,"abstract":"Abstract The new serious consideration to masonry and non-metallic structures evidenced their direct prospective to be, even in the present days, advanced architectural and engineering solutions. In the present paper, a form finding for a cement based tessellated pierced vault is studied. The multi-body rope approach (MRA) was used to define compression-only vault optimal shapes. Successively, the thrust network analysis (TNA) was implemented by Rhino-vault for a further validation of the shape and the definition of different tessellation meshes of the surfaces, according to different hole pattern configuration. Different piercing percentage of the vaults were considered and compared for the best solution identification. In addition, the geometrical solutions were analyzed by means of global stability analysis, taking into account the different positions of the holes. Furthermore, 3D printing with a Fuse Deposition Modeling (FDM) technique in polylactide (PLA) material (completely eco-friendly) is used for the construction of the formworks of the cement based blocks (dowels) useful for the assembly of a vault scaled prototype. The prototype of the vault, characterized by a certain piercing percentage was subjected to different loading conditions and monitored by a non-contact device based on the Digital Image Correlation (DIC) technique. The 3D-DIC was performed to recognize the structural behavior during the loading process of the model (prototype). DIC measurements were used to recognize in advance the critical condition of the vault under loading and the displacement measurements were correlated to the different loading phases up to the collapse condition.","PeriodicalId":44435,"journal":{"name":"Curved and Layered Structures","volume":"8 1","pages":"210 - 224"},"PeriodicalIF":1.1000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/cls-2021-0020","citationCount":"4","resultStr":"{\"title\":\"Form-finding of pierced vaults and digital fabrication of scaled prototype\",\"authors\":\"A. Bertetto, Federico Riberi\",\"doi\":\"10.1515/cls-2021-0020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The new serious consideration to masonry and non-metallic structures evidenced their direct prospective to be, even in the present days, advanced architectural and engineering solutions. In the present paper, a form finding for a cement based tessellated pierced vault is studied. The multi-body rope approach (MRA) was used to define compression-only vault optimal shapes. Successively, the thrust network analysis (TNA) was implemented by Rhino-vault for a further validation of the shape and the definition of different tessellation meshes of the surfaces, according to different hole pattern configuration. Different piercing percentage of the vaults were considered and compared for the best solution identification. In addition, the geometrical solutions were analyzed by means of global stability analysis, taking into account the different positions of the holes. Furthermore, 3D printing with a Fuse Deposition Modeling (FDM) technique in polylactide (PLA) material (completely eco-friendly) is used for the construction of the formworks of the cement based blocks (dowels) useful for the assembly of a vault scaled prototype. The prototype of the vault, characterized by a certain piercing percentage was subjected to different loading conditions and monitored by a non-contact device based on the Digital Image Correlation (DIC) technique. The 3D-DIC was performed to recognize the structural behavior during the loading process of the model (prototype). DIC measurements were used to recognize in advance the critical condition of the vault under loading and the displacement measurements were correlated to the different loading phases up to the collapse condition.\",\"PeriodicalId\":44435,\"journal\":{\"name\":\"Curved and Layered Structures\",\"volume\":\"8 1\",\"pages\":\"210 - 224\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/cls-2021-0020\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Curved and Layered Structures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/cls-2021-0020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Curved and Layered Structures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/cls-2021-0020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
Form-finding of pierced vaults and digital fabrication of scaled prototype
Abstract The new serious consideration to masonry and non-metallic structures evidenced their direct prospective to be, even in the present days, advanced architectural and engineering solutions. In the present paper, a form finding for a cement based tessellated pierced vault is studied. The multi-body rope approach (MRA) was used to define compression-only vault optimal shapes. Successively, the thrust network analysis (TNA) was implemented by Rhino-vault for a further validation of the shape and the definition of different tessellation meshes of the surfaces, according to different hole pattern configuration. Different piercing percentage of the vaults were considered and compared for the best solution identification. In addition, the geometrical solutions were analyzed by means of global stability analysis, taking into account the different positions of the holes. Furthermore, 3D printing with a Fuse Deposition Modeling (FDM) technique in polylactide (PLA) material (completely eco-friendly) is used for the construction of the formworks of the cement based blocks (dowels) useful for the assembly of a vault scaled prototype. The prototype of the vault, characterized by a certain piercing percentage was subjected to different loading conditions and monitored by a non-contact device based on the Digital Image Correlation (DIC) technique. The 3D-DIC was performed to recognize the structural behavior during the loading process of the model (prototype). DIC measurements were used to recognize in advance the critical condition of the vault under loading and the displacement measurements were correlated to the different loading phases up to the collapse condition.
期刊介绍:
The aim of Curved and Layered Structures is to become a premier source of knowledge and a worldwide-recognized platform of research and knowledge exchange for scientists of different disciplinary origins and backgrounds (e.g., civil, mechanical, marine, aerospace engineers and architects). The journal publishes research papers from a broad range of topics and approaches including structural mechanics, computational mechanics, engineering structures, architectural design, wind engineering, aerospace engineering, naval engineering, structural stability, structural dynamics, structural stability/reliability, experimental modeling and smart structures. Therefore, the Journal accepts both theoretical and applied contributions in all subfields of structural mechanics as long as they contribute in a broad sense to the core theme.