多维0-1矩阵的饱和

IF 1 Q1 MATHEMATICS
Shen-Fu Tsai
{"title":"多维0-1矩阵的饱和","authors":"Shen-Fu Tsai","doi":"10.47443/dml.2022.151","DOIUrl":null,"url":null,"abstract":"A 0-1 matrix $M$ is saturating for a 0-1 matrix $P$ if $M$ does not contain a submatrix that can be turned into $P$ by flipping any number of its $1$-entries to $0$-entries, and changing any $0$-entry to $1$-entry of $M$ introduces a copy of $P$. Matrix $M$ is semisaturating for $P$ if changing any $0$-entry to $1$-entry of $M$ introduces a new copy of $P$, regardless of whether $M$ originally contains $P$ or not. The functions $ex(n;P)$ and $sat(n;P)$ are the maximum and minimum possible number of $1$-entries a $n\\times n$ 0-1 matrix saturating for $P$ can have, respectively. Function $ssat(n;P)$ is the minimum possible number of $1$-entries a $n\\times n$ 0-1 matrix semisaturating for $P$ can have. Function $ex(n;P)$ has been studied for decades, while investigation on $sat(n;P)$ and $ssat(n;P)$ was initiated recently. In this paper, we make nontrivial generalization of results regarding these functions to multidimensional 0-1 matrices. In particular, we find the exact values of $ex(n;P,d)$ and $sat(n;P,d)$ when $P$ is a $d$-dimensional identity matrix. Then we give the necessary and sufficient condition for a multidimensional 0-1 matrix to have bounded semisaturation function.","PeriodicalId":36023,"journal":{"name":"Discrete Mathematics Letters","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2022-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Saturation of Multidimensional 0-1 Matrices\",\"authors\":\"Shen-Fu Tsai\",\"doi\":\"10.47443/dml.2022.151\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A 0-1 matrix $M$ is saturating for a 0-1 matrix $P$ if $M$ does not contain a submatrix that can be turned into $P$ by flipping any number of its $1$-entries to $0$-entries, and changing any $0$-entry to $1$-entry of $M$ introduces a copy of $P$. Matrix $M$ is semisaturating for $P$ if changing any $0$-entry to $1$-entry of $M$ introduces a new copy of $P$, regardless of whether $M$ originally contains $P$ or not. The functions $ex(n;P)$ and $sat(n;P)$ are the maximum and minimum possible number of $1$-entries a $n\\\\times n$ 0-1 matrix saturating for $P$ can have, respectively. Function $ssat(n;P)$ is the minimum possible number of $1$-entries a $n\\\\times n$ 0-1 matrix semisaturating for $P$ can have. Function $ex(n;P)$ has been studied for decades, while investigation on $sat(n;P)$ and $ssat(n;P)$ was initiated recently. In this paper, we make nontrivial generalization of results regarding these functions to multidimensional 0-1 matrices. In particular, we find the exact values of $ex(n;P,d)$ and $sat(n;P,d)$ when $P$ is a $d$-dimensional identity matrix. Then we give the necessary and sufficient condition for a multidimensional 0-1 matrix to have bounded semisaturation function.\",\"PeriodicalId\":36023,\"journal\":{\"name\":\"Discrete Mathematics Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Mathematics Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.47443/dml.2022.151\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47443/dml.2022.151","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

一个0-1矩阵$M$对于一个0-1矩阵$P$来说是饱和的,如果$M$不包含一个子矩阵,这个子矩阵可以通过将$1$的任意数目的$1$项翻转为$0$项而变成$P$,并且将$0$项更改为$1$- $M$的任何$0$项引入$P$的副本。矩阵$M$对于$P$来说是半饱和的,如果将$0$的任何条目更改为$M$的$1$条目引入了$P$的新副本,无论$M$最初是否包含$P$。函数$ex(n;P)$和$sat(n;P)$分别是一个$n\乘以n$ 0-1矩阵对$P$饱和所能具有的$1$项的最大值和最小值。函数$ssat(n;P)$是一个$n\乘以n$ 0-1的半饱和矩阵$P$所能具有的$1$项的最小可能数。函数$ex(n;P)$已经研究了几十年,而对$sat(n;P)$和$ssat(n;P)$的研究是最近才开始的。本文将这些函数的结果推广到多维的0-1矩阵。特别地,当$P$是$d维单位矩阵时,我们找到$ex(n;P,d)$和$sat(n;P,d)$的确切值。然后给出了多维0-1矩阵具有有界半饱和函数的充要条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Saturation of Multidimensional 0-1 Matrices
A 0-1 matrix $M$ is saturating for a 0-1 matrix $P$ if $M$ does not contain a submatrix that can be turned into $P$ by flipping any number of its $1$-entries to $0$-entries, and changing any $0$-entry to $1$-entry of $M$ introduces a copy of $P$. Matrix $M$ is semisaturating for $P$ if changing any $0$-entry to $1$-entry of $M$ introduces a new copy of $P$, regardless of whether $M$ originally contains $P$ or not. The functions $ex(n;P)$ and $sat(n;P)$ are the maximum and minimum possible number of $1$-entries a $n\times n$ 0-1 matrix saturating for $P$ can have, respectively. Function $ssat(n;P)$ is the minimum possible number of $1$-entries a $n\times n$ 0-1 matrix semisaturating for $P$ can have. Function $ex(n;P)$ has been studied for decades, while investigation on $sat(n;P)$ and $ssat(n;P)$ was initiated recently. In this paper, we make nontrivial generalization of results regarding these functions to multidimensional 0-1 matrices. In particular, we find the exact values of $ex(n;P,d)$ and $sat(n;P,d)$ when $P$ is a $d$-dimensional identity matrix. Then we give the necessary and sufficient condition for a multidimensional 0-1 matrix to have bounded semisaturation function.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete Mathematics Letters
Discrete Mathematics Letters Mathematics-Discrete Mathematics and Combinatorics
CiteScore
1.50
自引率
12.50%
发文量
47
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信