基于时间运动模板的人体动作识别

Samy Bakheet, A. Al-Hamadi, M. Mofaddel
{"title":"基于时间运动模板的人体动作识别","authors":"Samy Bakheet, A. Al-Hamadi, M. Mofaddel","doi":"10.9734/bjast/2017/28318","DOIUrl":null,"url":null,"abstract":"Despite their attractive properties of invariance, robustness and reliability, statistical motion descriptions from temporal templates have not apparently received the amount of attention they might deserve in the human action recognition literature. In this paper, we propose an innovative approach for action recognition, where a novel fuzzy representation based on temporal motion templates is developed to model human actions as time series of low-dimensional descriptors. An NB (Na¨ıve Bayes) classifier is trained on these features for action classification. When tested on a realistic action dataset incorporating a large collection of video data, the results demonstrate that the approach is able to achieve a recognition rate of as high as 93.7%, while remaining tractable for real-time operation.","PeriodicalId":91221,"journal":{"name":"British journal of applied science & technology","volume":" ","pages":"1-11"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Recognition of Human Actions Based on Temporal Motion Templates\",\"authors\":\"Samy Bakheet, A. Al-Hamadi, M. Mofaddel\",\"doi\":\"10.9734/bjast/2017/28318\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Despite their attractive properties of invariance, robustness and reliability, statistical motion descriptions from temporal templates have not apparently received the amount of attention they might deserve in the human action recognition literature. In this paper, we propose an innovative approach for action recognition, where a novel fuzzy representation based on temporal motion templates is developed to model human actions as time series of low-dimensional descriptors. An NB (Na¨ıve Bayes) classifier is trained on these features for action classification. When tested on a realistic action dataset incorporating a large collection of video data, the results demonstrate that the approach is able to achieve a recognition rate of as high as 93.7%, while remaining tractable for real-time operation.\",\"PeriodicalId\":91221,\"journal\":{\"name\":\"British journal of applied science & technology\",\"volume\":\" \",\"pages\":\"1-11\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"British journal of applied science & technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.9734/bjast/2017/28318\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"British journal of applied science & technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.9734/bjast/2017/28318","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

尽管时间模板的统计运动描述具有不变性、鲁棒性和可靠性等吸引人的特性,但在人类动作识别文献中,它们显然没有得到应有的重视。在本文中,我们提出了一种创新的动作识别方法,其中基于时间运动模板开发了一种新的模糊表示,将人类动作建模为低维描述符的时间序列。在这些特征上训练NB (Na¨ıve Bayes)分类器进行动作分类。在包含大量视频数据的真实动作数据集上进行测试,结果表明该方法能够达到高达93.7%的识别率,同时保持易于实时操作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Recognition of Human Actions Based on Temporal Motion Templates
Despite their attractive properties of invariance, robustness and reliability, statistical motion descriptions from temporal templates have not apparently received the amount of attention they might deserve in the human action recognition literature. In this paper, we propose an innovative approach for action recognition, where a novel fuzzy representation based on temporal motion templates is developed to model human actions as time series of low-dimensional descriptors. An NB (Na¨ıve Bayes) classifier is trained on these features for action classification. When tested on a realistic action dataset incorporating a large collection of video data, the results demonstrate that the approach is able to achieve a recognition rate of as high as 93.7%, while remaining tractable for real-time operation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信