{"title":"r矩阵及其应用的进展(根据Maulik-Okounkov, Kang-Kashiwara-Kim-Oh,…)","authors":"David Hernandez","doi":"10.24033/ast.1067","DOIUrl":null,"url":null,"abstract":"R-matrices are the solutions of the Yang-Baxter equation. At the origin of the quantum group theory, they may be interpreted as intertwining operators. Recent advances have been made independently in different directions. Maulik-Okounkov have given a geometric approach to R-matrices with new tools in symplectic geometry, the stable envelopes. Kang-Kashiwara-Kim-Oh proved a conjecture on the categorification of cluster algebras by using R-matrices in a crucial way. Eventually, a better understanding of the action of transfer-matrices obtained from R-matrices led to the proof of several conjectures about the corresponding quantum integrable systems.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2017-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Avancées concernant les R-matrices et leurs applications (d’après Maulik-Okounkov, Kang-Kashiwara-Kim-Oh, ...)\",\"authors\":\"David Hernandez\",\"doi\":\"10.24033/ast.1067\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"R-matrices are the solutions of the Yang-Baxter equation. At the origin of the quantum group theory, they may be interpreted as intertwining operators. Recent advances have been made independently in different directions. Maulik-Okounkov have given a geometric approach to R-matrices with new tools in symplectic geometry, the stable envelopes. Kang-Kashiwara-Kim-Oh proved a conjecture on the categorification of cluster algebras by using R-matrices in a crucial way. Eventually, a better understanding of the action of transfer-matrices obtained from R-matrices led to the proof of several conjectures about the corresponding quantum integrable systems.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2017-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.24033/ast.1067\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.24033/ast.1067","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 19
摘要
R-矩阵是杨-巴克斯特方程的解。在量子群论的起源,它们可以被解释为纠缠的算符。最近的进展是在不同的方向上独立取得的。Maulik Okounkov利用辛几何中的新工具,即稳定包络,给出了R矩阵的几何方法。Kang Kashiwara Kim Oh用R-矩阵证明了簇代数范畴化的一个猜想。最终,对从R-矩阵得到的转移矩阵的作用有了更好的理解,从而证明了关于相应量子可积系统的几个猜想。
Avancées concernant les R-matrices et leurs applications (d’après Maulik-Okounkov, Kang-Kashiwara-Kim-Oh, ...)
R-matrices are the solutions of the Yang-Baxter equation. At the origin of the quantum group theory, they may be interpreted as intertwining operators. Recent advances have been made independently in different directions. Maulik-Okounkov have given a geometric approach to R-matrices with new tools in symplectic geometry, the stable envelopes. Kang-Kashiwara-Kim-Oh proved a conjecture on the categorification of cluster algebras by using R-matrices in a crucial way. Eventually, a better understanding of the action of transfer-matrices obtained from R-matrices led to the proof of several conjectures about the corresponding quantum integrable systems.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.