r矩阵及其应用的进展(根据Maulik-Okounkov, Kang-Kashiwara-Kim-Oh,…)

IF 1 4区 数学 Q1 MATHEMATICS
Asterisque Pub Date : 2017-04-20 DOI:10.24033/ast.1067
David Hernandez
{"title":"r矩阵及其应用的进展(根据Maulik-Okounkov, Kang-Kashiwara-Kim-Oh,…)","authors":"David Hernandez","doi":"10.24033/ast.1067","DOIUrl":null,"url":null,"abstract":"R-matrices are the solutions of the Yang-Baxter equation. At the origin of the quantum group theory, they may be interpreted as intertwining operators. Recent advances have been made independently in different directions. Maulik-Okounkov have given a geometric approach to R-matrices with new tools in symplectic geometry, the stable envelopes. Kang-Kashiwara-Kim-Oh proved a conjecture on the categorification of cluster algebras by using R-matrices in a crucial way. Eventually, a better understanding of the action of transfer-matrices obtained from R-matrices led to the proof of several conjectures about the corresponding quantum integrable systems.","PeriodicalId":55445,"journal":{"name":"Asterisque","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2017-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Avancées concernant les R-matrices et leurs applications (d’après Maulik-Okounkov, Kang-Kashiwara-Kim-Oh, ...)\",\"authors\":\"David Hernandez\",\"doi\":\"10.24033/ast.1067\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"R-matrices are the solutions of the Yang-Baxter equation. At the origin of the quantum group theory, they may be interpreted as intertwining operators. Recent advances have been made independently in different directions. Maulik-Okounkov have given a geometric approach to R-matrices with new tools in symplectic geometry, the stable envelopes. Kang-Kashiwara-Kim-Oh proved a conjecture on the categorification of cluster algebras by using R-matrices in a crucial way. Eventually, a better understanding of the action of transfer-matrices obtained from R-matrices led to the proof of several conjectures about the corresponding quantum integrable systems.\",\"PeriodicalId\":55445,\"journal\":{\"name\":\"Asterisque\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2017-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asterisque\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.24033/ast.1067\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asterisque","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.24033/ast.1067","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 19

摘要

R-矩阵是杨-巴克斯特方程的解。在量子群论的起源,它们可以被解释为纠缠的算符。最近的进展是在不同的方向上独立取得的。Maulik Okounkov利用辛几何中的新工具,即稳定包络,给出了R矩阵的几何方法。Kang Kashiwara Kim Oh用R-矩阵证明了簇代数范畴化的一个猜想。最终,对从R-矩阵得到的转移矩阵的作用有了更好的理解,从而证明了关于相应量子可积系统的几个猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Avancées concernant les R-matrices et leurs applications (d’après Maulik-Okounkov, Kang-Kashiwara-Kim-Oh, ...)
R-matrices are the solutions of the Yang-Baxter equation. At the origin of the quantum group theory, they may be interpreted as intertwining operators. Recent advances have been made independently in different directions. Maulik-Okounkov have given a geometric approach to R-matrices with new tools in symplectic geometry, the stable envelopes. Kang-Kashiwara-Kim-Oh proved a conjecture on the categorification of cluster algebras by using R-matrices in a crucial way. Eventually, a better understanding of the action of transfer-matrices obtained from R-matrices led to the proof of several conjectures about the corresponding quantum integrable systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Asterisque
Asterisque MATHEMATICS-
CiteScore
2.90
自引率
0.00%
发文量
1
审稿时长
>12 weeks
期刊介绍: The publications part of the site of the French Mathematical Society (Société Mathématique de France - SMF) is bilingual English-French. You may visit the pages below to discover our list of journals and book collections. The institutional web site of the SMF (news, teaching activities, conference announcements...) is essentially written in French.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信