Yifan Zhang, Xiaowen Qi, Junzhi Wang, S. Luo, Zongliang Zuo
{"title":"污泥与浒苔共热解行为及热解残渣对水中Cr(VI)的吸附机理研究","authors":"Yifan Zhang, Xiaowen Qi, Junzhi Wang, S. Luo, Zongliang Zuo","doi":"10.1063/5.0150242","DOIUrl":null,"url":null,"abstract":"The thermal–chemical conversion method has significant potential for the recovery of organic matter present in sewage sludge (abbreviated as SS), offering broad market prospects. In this study, a novel approach is proposed for the preparation of a composite adsorbent, named SS-EP, derived from the co-pyrolysis residue of sewage sludge and Enteromorpha prolifera. An orthogonal experiment was designed to investigate the performance of the adsorbent, and the results revealed that the optimal conditions were achieved when the SS proportion was 40%, the concentration of zinc chloride was 0.1 mol/l, the pyrolysis temperature was 500 °C, and the pyrolysis time was 30 min. Notably, the SS-EP composite adsorbent exhibited pronounced efficacy in the removal of Cr(VI) under both acidic and neutral conditions, achieving a removal rate exceeding 97%. Furthermore, the concentration of heavy metals in the leaching solution of the adsorbent was found to be significantly lower than the limit specified in the GB5085.3-2007 standard. Regeneration experiments demonstrated that even after the third regeneration, the SS-EP composite adsorbent maintained a removal rate of 70% for Cr(VI).","PeriodicalId":16953,"journal":{"name":"Journal of Renewable and Sustainable Energy","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on the co-pyrolysis behaviors of sewage sludge and Enteromorpha prolifera and the adsorption mechanism of Cr(VI) in water using pyrolysis residue\",\"authors\":\"Yifan Zhang, Xiaowen Qi, Junzhi Wang, S. Luo, Zongliang Zuo\",\"doi\":\"10.1063/5.0150242\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The thermal–chemical conversion method has significant potential for the recovery of organic matter present in sewage sludge (abbreviated as SS), offering broad market prospects. In this study, a novel approach is proposed for the preparation of a composite adsorbent, named SS-EP, derived from the co-pyrolysis residue of sewage sludge and Enteromorpha prolifera. An orthogonal experiment was designed to investigate the performance of the adsorbent, and the results revealed that the optimal conditions were achieved when the SS proportion was 40%, the concentration of zinc chloride was 0.1 mol/l, the pyrolysis temperature was 500 °C, and the pyrolysis time was 30 min. Notably, the SS-EP composite adsorbent exhibited pronounced efficacy in the removal of Cr(VI) under both acidic and neutral conditions, achieving a removal rate exceeding 97%. Furthermore, the concentration of heavy metals in the leaching solution of the adsorbent was found to be significantly lower than the limit specified in the GB5085.3-2007 standard. Regeneration experiments demonstrated that even after the third regeneration, the SS-EP composite adsorbent maintained a removal rate of 70% for Cr(VI).\",\"PeriodicalId\":16953,\"journal\":{\"name\":\"Journal of Renewable and Sustainable Energy\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Renewable and Sustainable Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0150242\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Renewable and Sustainable Energy","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0150242","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Study on the co-pyrolysis behaviors of sewage sludge and Enteromorpha prolifera and the adsorption mechanism of Cr(VI) in water using pyrolysis residue
The thermal–chemical conversion method has significant potential for the recovery of organic matter present in sewage sludge (abbreviated as SS), offering broad market prospects. In this study, a novel approach is proposed for the preparation of a composite adsorbent, named SS-EP, derived from the co-pyrolysis residue of sewage sludge and Enteromorpha prolifera. An orthogonal experiment was designed to investigate the performance of the adsorbent, and the results revealed that the optimal conditions were achieved when the SS proportion was 40%, the concentration of zinc chloride was 0.1 mol/l, the pyrolysis temperature was 500 °C, and the pyrolysis time was 30 min. Notably, the SS-EP composite adsorbent exhibited pronounced efficacy in the removal of Cr(VI) under both acidic and neutral conditions, achieving a removal rate exceeding 97%. Furthermore, the concentration of heavy metals in the leaching solution of the adsorbent was found to be significantly lower than the limit specified in the GB5085.3-2007 standard. Regeneration experiments demonstrated that even after the third regeneration, the SS-EP composite adsorbent maintained a removal rate of 70% for Cr(VI).
期刊介绍:
The Journal of Renewable and Sustainable Energy (JRSE) is an interdisciplinary, peer-reviewed journal covering all areas of renewable and sustainable energy relevant to the physical science and engineering communities. The interdisciplinary approach of the publication ensures that the editors draw from researchers worldwide in a diverse range of fields.
Topics covered include:
Renewable energy economics and policy
Renewable energy resource assessment
Solar energy: photovoltaics, solar thermal energy, solar energy for fuels
Wind energy: wind farms, rotors and blades, on- and offshore wind conditions, aerodynamics, fluid dynamics
Bioenergy: biofuels, biomass conversion, artificial photosynthesis
Distributed energy generation: rooftop PV, distributed fuel cells, distributed wind, micro-hydrogen power generation
Power distribution & systems modeling: power electronics and controls, smart grid
Energy efficient buildings: smart windows, PV, wind, power management
Energy conversion: flexoelectric, piezoelectric, thermoelectric, other technologies
Energy storage: batteries, supercapacitors, hydrogen storage, other fuels
Fuel cells: proton exchange membrane cells, solid oxide cells, hybrid fuel cells, other
Marine and hydroelectric energy: dams, tides, waves, other
Transportation: alternative vehicle technologies, plug-in technologies, other
Geothermal energy