{"title":"关于分裂数的一些变化","authors":"Saharon Shelah , Juris Steprāns","doi":"10.1016/j.apal.2023.103321","DOIUrl":null,"url":null,"abstract":"<div><p>Variations on the splitting number <span><math><mi>s</mi></math></span> are examined by localizing the splitting property to finite sets. To be more precise, rather than considering families of subsets of the integers that have the property that every infinite set is split into two infinite sets by some member of the family a stronger property is considered: Whenever an subset of the integers is represented as the disjoint union of a family of finite sets one can ask that each of the finite sets is split into two non-empty pieces by some member of the family. It will be shown that restricting the size of the finite sets can result in distinguishable properties. In §<span>2</span> some inequalities will be established, while in §<span>3</span> the main consistency result will be proved.</p></div>","PeriodicalId":50762,"journal":{"name":"Annals of Pure and Applied Logic","volume":"175 1","pages":"Article 103321"},"PeriodicalIF":0.6000,"publicationDate":"2023-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Some variations on the splitting number\",\"authors\":\"Saharon Shelah , Juris Steprāns\",\"doi\":\"10.1016/j.apal.2023.103321\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Variations on the splitting number <span><math><mi>s</mi></math></span> are examined by localizing the splitting property to finite sets. To be more precise, rather than considering families of subsets of the integers that have the property that every infinite set is split into two infinite sets by some member of the family a stronger property is considered: Whenever an subset of the integers is represented as the disjoint union of a family of finite sets one can ask that each of the finite sets is split into two non-empty pieces by some member of the family. It will be shown that restricting the size of the finite sets can result in distinguishable properties. In §<span>2</span> some inequalities will be established, while in §<span>3</span> the main consistency result will be proved.</p></div>\",\"PeriodicalId\":50762,\"journal\":{\"name\":\"Annals of Pure and Applied Logic\",\"volume\":\"175 1\",\"pages\":\"Article 103321\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Pure and Applied Logic\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168007223000787\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"LOGIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Pure and Applied Logic","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168007223000787","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"LOGIC","Score":null,"Total":0}
Variations on the splitting number are examined by localizing the splitting property to finite sets. To be more precise, rather than considering families of subsets of the integers that have the property that every infinite set is split into two infinite sets by some member of the family a stronger property is considered: Whenever an subset of the integers is represented as the disjoint union of a family of finite sets one can ask that each of the finite sets is split into two non-empty pieces by some member of the family. It will be shown that restricting the size of the finite sets can result in distinguishable properties. In §2 some inequalities will be established, while in §3 the main consistency result will be proved.
期刊介绍:
The journal Annals of Pure and Applied Logic publishes high quality papers in all areas of mathematical logic as well as applications of logic in mathematics, in theoretical computer science and in other related disciplines. All submissions to the journal should be mathematically correct, well written (preferably in English)and contain relevant new results that are of significant interest to a substantial number of logicians. The journal also considers submissions that are somewhat too long to be published by other journals while being too short to form a separate memoir provided that they are of particular outstanding quality and broad interest. In addition, Annals of Pure and Applied Logic occasionally publishes special issues of selected papers from well-chosen conferences in pure and applied logic.