{"title":"某些全虚四次域单位的$2$进对数","authors":"Jianing Li","doi":"10.4310/ajm.2021.v25.n2.a1","DOIUrl":null,"url":null,"abstract":"In this paper, we prove a result on the $2$-adic logarithm of the fundamental unit of the field $\\mathbb{Q}(\\sqrt[4]{-q}) $, where $q\\equiv 3\\bmod 4$ is a prime. When $q\\equiv 15\\bmod 16$, this result confirms a speculation of Coates-Li and has consequences for certain Iwasawa modules arising in their work.","PeriodicalId":55452,"journal":{"name":"Asian Journal of Mathematics","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2020-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"On the $2$-adic logarithm of units of certain totally imaginary quartic fields\",\"authors\":\"Jianing Li\",\"doi\":\"10.4310/ajm.2021.v25.n2.a1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we prove a result on the $2$-adic logarithm of the fundamental unit of the field $\\\\mathbb{Q}(\\\\sqrt[4]{-q}) $, where $q\\\\equiv 3\\\\bmod 4$ is a prime. When $q\\\\equiv 15\\\\bmod 16$, this result confirms a speculation of Coates-Li and has consequences for certain Iwasawa modules arising in their work.\",\"PeriodicalId\":55452,\"journal\":{\"name\":\"Asian Journal of Mathematics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2020-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asian Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/ajm.2021.v25.n2.a1\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/ajm.2021.v25.n2.a1","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
On the $2$-adic logarithm of units of certain totally imaginary quartic fields
In this paper, we prove a result on the $2$-adic logarithm of the fundamental unit of the field $\mathbb{Q}(\sqrt[4]{-q}) $, where $q\equiv 3\bmod 4$ is a prime. When $q\equiv 15\bmod 16$, this result confirms a speculation of Coates-Li and has consequences for certain Iwasawa modules arising in their work.