{"title":"面向多功能适应性建筑围护结构性能设计的两步仿生设计与评估框架的开发","authors":"Salman Oukati Sadegh, Shawul Gulilat Haile, Ziyaolrahman Jamshidzehi","doi":"10.15627/jd.2022.2","DOIUrl":null,"url":null,"abstract":"Climate change, increase in CO2 production and energy consumption are major global issues and the building, environmental and construction sector is contributing to the increasing concern day by day. Due to increasing demands to satisfy environmental, social, and economic requirements, designing efficient and sustainable buildings has become increasingly complex. Today, the tendency towards sustainability has created new design approaches regarding adaptable kinetic building envelopes, amongst all, biomimetic design principles have gained interest. As opposed to traditional methods, the implemented biomimetic design approach in this research can assist in finding solutions for complex real-life problems regarding the adaptability of kinetic facades to achieve robustness, tractability, low solution cost and better rapport with reality. Design frameworks introduced to this day either do not incorporate bio-inspired concepts or are not able to map potential trade-offs in the performance of multi-functional biomimetic adaptable skins, effectively. Therefore, a flexible and expandable framework is necessary to go beyond project-based frameworks applied to case specific conditions. To design for performance, this research proposes a framework and aims to integrate different biomimetic approaches to assist designers and researchers in two steps to design and evaluate kinetic facades in different phases of development.","PeriodicalId":37388,"journal":{"name":"Journal of Daylighting","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Development of Two-Step Biomimetic Design and Evaluation Framework for Performance-Oriented Design of Multi-Functional Adaptable Building Envelopes\",\"authors\":\"Salman Oukati Sadegh, Shawul Gulilat Haile, Ziyaolrahman Jamshidzehi\",\"doi\":\"10.15627/jd.2022.2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Climate change, increase in CO2 production and energy consumption are major global issues and the building, environmental and construction sector is contributing to the increasing concern day by day. Due to increasing demands to satisfy environmental, social, and economic requirements, designing efficient and sustainable buildings has become increasingly complex. Today, the tendency towards sustainability has created new design approaches regarding adaptable kinetic building envelopes, amongst all, biomimetic design principles have gained interest. As opposed to traditional methods, the implemented biomimetic design approach in this research can assist in finding solutions for complex real-life problems regarding the adaptability of kinetic facades to achieve robustness, tractability, low solution cost and better rapport with reality. Design frameworks introduced to this day either do not incorporate bio-inspired concepts or are not able to map potential trade-offs in the performance of multi-functional biomimetic adaptable skins, effectively. Therefore, a flexible and expandable framework is necessary to go beyond project-based frameworks applied to case specific conditions. To design for performance, this research proposes a framework and aims to integrate different biomimetic approaches to assist designers and researchers in two steps to design and evaluate kinetic facades in different phases of development.\",\"PeriodicalId\":37388,\"journal\":{\"name\":\"Journal of Daylighting\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-02-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Daylighting\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15627/jd.2022.2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Energy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Daylighting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15627/jd.2022.2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Energy","Score":null,"Total":0}
Development of Two-Step Biomimetic Design and Evaluation Framework for Performance-Oriented Design of Multi-Functional Adaptable Building Envelopes
Climate change, increase in CO2 production and energy consumption are major global issues and the building, environmental and construction sector is contributing to the increasing concern day by day. Due to increasing demands to satisfy environmental, social, and economic requirements, designing efficient and sustainable buildings has become increasingly complex. Today, the tendency towards sustainability has created new design approaches regarding adaptable kinetic building envelopes, amongst all, biomimetic design principles have gained interest. As opposed to traditional methods, the implemented biomimetic design approach in this research can assist in finding solutions for complex real-life problems regarding the adaptability of kinetic facades to achieve robustness, tractability, low solution cost and better rapport with reality. Design frameworks introduced to this day either do not incorporate bio-inspired concepts or are not able to map potential trade-offs in the performance of multi-functional biomimetic adaptable skins, effectively. Therefore, a flexible and expandable framework is necessary to go beyond project-based frameworks applied to case specific conditions. To design for performance, this research proposes a framework and aims to integrate different biomimetic approaches to assist designers and researchers in two steps to design and evaluate kinetic facades in different phases of development.
期刊介绍:
Journal of Daylighting is an international journal devoted to investigations of daylighting in buildings. It is the leading journal that publishes original research on all aspects of solar energy and lighting. Areas of special interest for this journal include, but are not limited to, the following: -Daylighting systems -Lighting simulation -Lighting designs -Luminaires -Lighting metrology and light quality -Lighting control -Building physics - lighting -Building energy modeling -Energy efficient buildings -Zero-energy buildings -Indoor environment quality -Sustainable solar energy systems -Application of solar energy sources in buildings -Photovoltaics systems -Building-integrated photovoltaics -Concentrator technology -Concentrator photovoltaic -Solar thermal