{"title":"确定无人驾驶地面车辆在特种作物系统中杂草控制的效用","authors":"Matthew A. Cutulle, J. Maja","doi":"10.4081/ija.2021.1865","DOIUrl":null,"url":null,"abstract":"Specialty crop herbicides are not a target for herbicide discovery programs and many of these crops do not have access to relevant herbicides. High‐value fruit and vegetable crops represent high potential liability in the case of herbicide‐induced crop damage and low acres for revenue. Labor shortages and higher manual weeding costs are an issue for both conventional and organic specialty crop growers. Robotic weeders are promising new weed control tools for specialty crops, because they are cheaper to develop and, with fewer environmental and human health risks, are less regulated than herbicides. However, many of the robotic weeders are too expensive for small growers to use. In the future greater investment into robotic weeders for small scale growers will be important. The Clearpath robotics platform Husky may provide a cheap and autonomous way to control weeds in small diversified specialty crop farms. Being able to work autonomously in multiple soil moisture environments is the driving factor behind optimizing the Husky platform for weed control. Research has been conducted to evaluate the impact of soil moisture and mechanical actuator on mobility and weed control. Though weed control was not commercially acceptable in these studies, future optimizations to the Husky robotics platform have the potential to achieve commercial success.","PeriodicalId":14618,"journal":{"name":"Italian Journal of Agronomy","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2021-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Determining the utility of an unmanned ground vehicle for weed control in specialty crop systems\",\"authors\":\"Matthew A. Cutulle, J. Maja\",\"doi\":\"10.4081/ija.2021.1865\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Specialty crop herbicides are not a target for herbicide discovery programs and many of these crops do not have access to relevant herbicides. High‐value fruit and vegetable crops represent high potential liability in the case of herbicide‐induced crop damage and low acres for revenue. Labor shortages and higher manual weeding costs are an issue for both conventional and organic specialty crop growers. Robotic weeders are promising new weed control tools for specialty crops, because they are cheaper to develop and, with fewer environmental and human health risks, are less regulated than herbicides. However, many of the robotic weeders are too expensive for small growers to use. In the future greater investment into robotic weeders for small scale growers will be important. The Clearpath robotics platform Husky may provide a cheap and autonomous way to control weeds in small diversified specialty crop farms. Being able to work autonomously in multiple soil moisture environments is the driving factor behind optimizing the Husky platform for weed control. Research has been conducted to evaluate the impact of soil moisture and mechanical actuator on mobility and weed control. Though weed control was not commercially acceptable in these studies, future optimizations to the Husky robotics platform have the potential to achieve commercial success.\",\"PeriodicalId\":14618,\"journal\":{\"name\":\"Italian Journal of Agronomy\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2021-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Italian Journal of Agronomy\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.4081/ija.2021.1865\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Italian Journal of Agronomy","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.4081/ija.2021.1865","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
Determining the utility of an unmanned ground vehicle for weed control in specialty crop systems
Specialty crop herbicides are not a target for herbicide discovery programs and many of these crops do not have access to relevant herbicides. High‐value fruit and vegetable crops represent high potential liability in the case of herbicide‐induced crop damage and low acres for revenue. Labor shortages and higher manual weeding costs are an issue for both conventional and organic specialty crop growers. Robotic weeders are promising new weed control tools for specialty crops, because they are cheaper to develop and, with fewer environmental and human health risks, are less regulated than herbicides. However, many of the robotic weeders are too expensive for small growers to use. In the future greater investment into robotic weeders for small scale growers will be important. The Clearpath robotics platform Husky may provide a cheap and autonomous way to control weeds in small diversified specialty crop farms. Being able to work autonomously in multiple soil moisture environments is the driving factor behind optimizing the Husky platform for weed control. Research has been conducted to evaluate the impact of soil moisture and mechanical actuator on mobility and weed control. Though weed control was not commercially acceptable in these studies, future optimizations to the Husky robotics platform have the potential to achieve commercial success.
期刊介绍:
The Italian Journal of Agronomy (IJA) is the official journal of the Italian Society for Agronomy. It publishes quarterly original articles and reviews reporting experimental and theoretical contributions to agronomy and crop science, with main emphasis on original articles from Italy and countries having similar agricultural conditions. The journal deals with all aspects of Agricultural and Environmental Sciences, the interactions between cropping systems and sustainable development. Multidisciplinary articles that bridge agronomy with ecology, environmental and social sciences are also welcome.