浸入式流形的并发法线

Q3 Mathematics
G. Panina, D. Siersma
{"title":"浸入式流形的并发法线","authors":"G. Panina, D. Siersma","doi":"10.46298/cm.10840","DOIUrl":null,"url":null,"abstract":"It is conjectured since long that for any convex body $K \\subset\n\\mathbb{R}^n$ there exists a point in the interior of $K$ which belongs to at\nleast $2n$ normals from different points on the boundary of $K$. The conjecture\nis known to be true for $n=2,3,4$.\n Motivated by a recent results of Y. Martinez-Maure, and an approach by A.\nGrebennikov and G. Panina, we prove the following: Let a compact smooth\n$m$-dimensional manifold $M^m$ be immersed in $ \\mathbb{R}^n$. We assume that\nat least one of the homology groups $H_k(M^m,\\mathbb{Z}_2)$ with $k<m$\nvanishes. Then under mild conditions, almost every normal line to $M^m$\ncontains an intersection point of at least $\\beta +4$ normals from different\npoints of $M^m$, where $\\beta$ is the sum of Betti numbers of $M^m$.","PeriodicalId":37836,"journal":{"name":"Communications in Mathematics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Concurrent normals of immersed manifolds\",\"authors\":\"G. Panina, D. Siersma\",\"doi\":\"10.46298/cm.10840\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is conjectured since long that for any convex body $K \\\\subset\\n\\\\mathbb{R}^n$ there exists a point in the interior of $K$ which belongs to at\\nleast $2n$ normals from different points on the boundary of $K$. The conjecture\\nis known to be true for $n=2,3,4$.\\n Motivated by a recent results of Y. Martinez-Maure, and an approach by A.\\nGrebennikov and G. Panina, we prove the following: Let a compact smooth\\n$m$-dimensional manifold $M^m$ be immersed in $ \\\\mathbb{R}^n$. We assume that\\nat least one of the homology groups $H_k(M^m,\\\\mathbb{Z}_2)$ with $k<m$\\nvanishes. Then under mild conditions, almost every normal line to $M^m$\\ncontains an intersection point of at least $\\\\beta +4$ normals from different\\npoints of $M^m$, where $\\\\beta$ is the sum of Betti numbers of $M^m$.\",\"PeriodicalId\":37836,\"journal\":{\"name\":\"Communications in Mathematics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46298/cm.10840\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46298/cm.10840","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

长久以来,我们推测对于任何凸体$K \子集$ mathbb{R}^n$,在$K$的内部存在一个点,该点至少属于$K$边界上不同点的$2n$法线。这个猜想对于n=2,3,4是成立的。根据Y. Martinez-Maure最近的结果,以及a . grebennikov和G. Panina的一种方法,我们证明了以下问题:设一个紧化光滑$m$维流形$m ^m$浸入$ \mathbb{R}^n$中。我们假设在k< M的同调群$H_k(M^ M,\mathbb{Z}_2)$中至少有一个不存在。然后在温和的条件下,几乎每条到$M^ M $的法线都包含至少$\beta +4$从$M^ M $的不同点来的法线的交点,其中$\beta$是$M^ M $的贝蒂数之和。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Concurrent normals of immersed manifolds
It is conjectured since long that for any convex body $K \subset \mathbb{R}^n$ there exists a point in the interior of $K$ which belongs to at least $2n$ normals from different points on the boundary of $K$. The conjecture is known to be true for $n=2,3,4$. Motivated by a recent results of Y. Martinez-Maure, and an approach by A. Grebennikov and G. Panina, we prove the following: Let a compact smooth $m$-dimensional manifold $M^m$ be immersed in $ \mathbb{R}^n$. We assume that at least one of the homology groups $H_k(M^m,\mathbb{Z}_2)$ with $k
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications in Mathematics
Communications in Mathematics Mathematics-Mathematics (all)
CiteScore
1.00
自引率
0.00%
发文量
26
审稿时长
45 weeks
期刊介绍: Communications in Mathematics publishes research and survey papers in all areas of pure and applied mathematics. To be acceptable for publication, the paper must be significant, original and correct. High quality review papers of interest to a wide range of scientists in mathematics and its applications are equally welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信