利用代偿和非代偿多维IRT模型恢复潜在能力之间的相关性

IF 1 Q2 SOCIAL SCIENCES, INTERDISCIPLINARY
Yanyan Fu, Tyler Strachan, E. Ip, John T. Willse, Shyh-Huei Chen, Terry A. Ackerman
{"title":"利用代偿和非代偿多维IRT模型恢复潜在能力之间的相关性","authors":"Yanyan Fu, Tyler Strachan, E. Ip, John T. Willse, Shyh-Huei Chen, Terry A. Ackerman","doi":"10.1080/15305058.2019.1692212","DOIUrl":null,"url":null,"abstract":"This research examined correlation estimates between latent abilities when using the two-dimensional and three-dimensional compensatory and noncompensatory item response theory models. Simulation study results showed that the recovery of the latent correlation was best when the test contained 100% of simple structure items for all models and conditions. When a test measured weakly discriminated dimensions, it became harder to recover the latent correlation. Results also showed that increasing the sample size, test length, or using simpler models (i.e., two-parameter logistic rather than three-parameter logistic, compensatory rather than noncompensatory) could improve the recovery of latent correlation.","PeriodicalId":46615,"journal":{"name":"International Journal of Testing","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2020-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/15305058.2019.1692212","citationCount":"1","resultStr":"{\"title\":\"The Recovery of Correlation Between Latent Abilities Using Compensatory and Noncompensatory Multidimensional IRT Models\",\"authors\":\"Yanyan Fu, Tyler Strachan, E. Ip, John T. Willse, Shyh-Huei Chen, Terry A. Ackerman\",\"doi\":\"10.1080/15305058.2019.1692212\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research examined correlation estimates between latent abilities when using the two-dimensional and three-dimensional compensatory and noncompensatory item response theory models. Simulation study results showed that the recovery of the latent correlation was best when the test contained 100% of simple structure items for all models and conditions. When a test measured weakly discriminated dimensions, it became harder to recover the latent correlation. Results also showed that increasing the sample size, test length, or using simpler models (i.e., two-parameter logistic rather than three-parameter logistic, compensatory rather than noncompensatory) could improve the recovery of latent correlation.\",\"PeriodicalId\":46615,\"journal\":{\"name\":\"International Journal of Testing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2020-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/15305058.2019.1692212\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Testing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/15305058.2019.1692212\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"SOCIAL SCIENCES, INTERDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Testing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/15305058.2019.1692212","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"SOCIAL SCIENCES, INTERDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

摘要

当使用二维和三维补偿和非补偿项目反应理论模型时,本研究检验了潜在能力之间的相关性估计。模拟研究结果表明,在所有模型和条件下,当测试包含100%的简单结构项时,潜在相关性的恢复最好。当测试测量到弱辨别维度时,恢复潜在相关性变得更加困难。结果还表明,增加样本量、测试长度或使用更简单的模型(即两参数逻辑而非三参数逻辑,补偿而非非补偿)可以提高潜在相关性的恢复。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Recovery of Correlation Between Latent Abilities Using Compensatory and Noncompensatory Multidimensional IRT Models
This research examined correlation estimates between latent abilities when using the two-dimensional and three-dimensional compensatory and noncompensatory item response theory models. Simulation study results showed that the recovery of the latent correlation was best when the test contained 100% of simple structure items for all models and conditions. When a test measured weakly discriminated dimensions, it became harder to recover the latent correlation. Results also showed that increasing the sample size, test length, or using simpler models (i.e., two-parameter logistic rather than three-parameter logistic, compensatory rather than noncompensatory) could improve the recovery of latent correlation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Testing
International Journal of Testing SOCIAL SCIENCES, INTERDISCIPLINARY-
CiteScore
3.60
自引率
11.80%
发文量
13
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信