用交易数据定义产品的产品匹配调整R平方方法

IF 0.5 4区 数学 Q4 SOCIAL SCIENCES, MATHEMATICAL METHODS
A. Chessa
{"title":"用交易数据定义产品的产品匹配调整R平方方法","authors":"A. Chessa","doi":"10.2478/jos-2021-0018","DOIUrl":null,"url":null,"abstract":"Abstract The occurrence of relaunches of consumer goods at the barcode (GTIN) level is a well-known phenomenon in transaction data of consumer purchases. GTINs of disappearing and reintroduced items have to be linked in order to capture possible price changes. This article presents a method that groups GTINs into strata (‘products’) by balancing two measures: an explained variance (R squared) measure for the ‘homogeneity’ of GTINs within products, while the second expresses the degree to which products can be ‘matched’ over time with respect to a comparison period. The resulting product ‘match adjusted R squared’ (MARS) combines explained variance in product prices with product match over time, so that different stratification schemes can be ranked according to the combined measure. MARS has been applied to a broad range of product types. Individual GTINs are suitable as products for food and beverages, but not for product types with higher rates of churn, such as clothing, pharmacy products and electronics. In these cases, products are defined as combinations of characteristics, so that GTINs with the same characteristics are grouped into the same product. Future research focuses on further developments of MARS, such as attribute selection when data sets contain large numbers of variables.","PeriodicalId":51092,"journal":{"name":"Journal of Official Statistics","volume":"37 1","pages":"411 - 432"},"PeriodicalIF":0.5000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Product Match Adjusted R Squared Method for Defining Products with Transaction Data\",\"authors\":\"A. Chessa\",\"doi\":\"10.2478/jos-2021-0018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The occurrence of relaunches of consumer goods at the barcode (GTIN) level is a well-known phenomenon in transaction data of consumer purchases. GTINs of disappearing and reintroduced items have to be linked in order to capture possible price changes. This article presents a method that groups GTINs into strata (‘products’) by balancing two measures: an explained variance (R squared) measure for the ‘homogeneity’ of GTINs within products, while the second expresses the degree to which products can be ‘matched’ over time with respect to a comparison period. The resulting product ‘match adjusted R squared’ (MARS) combines explained variance in product prices with product match over time, so that different stratification schemes can be ranked according to the combined measure. MARS has been applied to a broad range of product types. Individual GTINs are suitable as products for food and beverages, but not for product types with higher rates of churn, such as clothing, pharmacy products and electronics. In these cases, products are defined as combinations of characteristics, so that GTINs with the same characteristics are grouped into the same product. Future research focuses on further developments of MARS, such as attribute selection when data sets contain large numbers of variables.\",\"PeriodicalId\":51092,\"journal\":{\"name\":\"Journal of Official Statistics\",\"volume\":\"37 1\",\"pages\":\"411 - 432\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2021-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Official Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2478/jos-2021-0018\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"SOCIAL SCIENCES, MATHEMATICAL METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Official Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2478/jos-2021-0018","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"SOCIAL SCIENCES, MATHEMATICAL METHODS","Score":null,"Total":0}
引用次数: 0

摘要

摘要在消费者购买的交易数据中,条形码(GTIN)级别的消费品重新推出是一个众所周知的现象。为了捕捉可能的价格变化,必须将消失和重新引入商品的GTIN联系起来。本文提出了一种方法,通过平衡两个指标,将GTIN分组为层(“产品”):一个是产品内GTIN“同质性”的解释方差(R平方)指标,而第二个指标表示产品在一段时间内相对于比较期的“匹配”程度。由此产生的产品“匹配调整的R平方”(MARS)将产品价格的解释方差与产品匹配随时间的变化相结合,从而可以根据组合的度量对不同的分层方案进行排序。MARS已应用于广泛的产品类型。单个GTIN适用于食品和饮料产品,但不适用于流失率较高的产品类型,如服装、制药产品和电子产品。在这些情况下,产品被定义为特性的组合,因此具有相同特性的GTIN被分组到同一产品中。未来的研究重点是MARS的进一步发展,例如当数据集包含大量变量时的属性选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Product Match Adjusted R Squared Method for Defining Products with Transaction Data
Abstract The occurrence of relaunches of consumer goods at the barcode (GTIN) level is a well-known phenomenon in transaction data of consumer purchases. GTINs of disappearing and reintroduced items have to be linked in order to capture possible price changes. This article presents a method that groups GTINs into strata (‘products’) by balancing two measures: an explained variance (R squared) measure for the ‘homogeneity’ of GTINs within products, while the second expresses the degree to which products can be ‘matched’ over time with respect to a comparison period. The resulting product ‘match adjusted R squared’ (MARS) combines explained variance in product prices with product match over time, so that different stratification schemes can be ranked according to the combined measure. MARS has been applied to a broad range of product types. Individual GTINs are suitable as products for food and beverages, but not for product types with higher rates of churn, such as clothing, pharmacy products and electronics. In these cases, products are defined as combinations of characteristics, so that GTINs with the same characteristics are grouped into the same product. Future research focuses on further developments of MARS, such as attribute selection when data sets contain large numbers of variables.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Official Statistics
Journal of Official Statistics STATISTICS & PROBABILITY-
CiteScore
1.90
自引率
9.10%
发文量
39
审稿时长
>12 weeks
期刊介绍: JOS is an international quarterly published by Statistics Sweden. We publish research articles in the area of survey and statistical methodology and policy matters facing national statistical offices and other producers of statistics. The intended readers are researchers or practicians at statistical agencies or in universities and private organizations dealing with problems which concern aspects of production of official statistics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信