{"title":"Hermitian$K$理论、Dedekind$\\zeta$函数和数域中整数环上的二次形式","authors":"Jonas Irgens Kylling, O. Rondigs, P. Ostvaer","doi":"10.4310/cjm.2020.v8.n3.a3","DOIUrl":null,"url":null,"abstract":"We employ the slice spectral sequence, the motivic Steenrod algebra, and Voevodsky's solutions of the Milnor and Bloch-Kato conjectures to calculate the hermitian $K$-groups of rings of integers in number fields. Moreover, we relate the orders of these groups to special values of Dedekind $\\zeta$-functions for totally real abelian number fields. Our methods apply more readily to the examples of algebraic $K$-theory and higher Witt-theory, and give a complete set of invariants for quadratic forms over rings of integers in number fields.","PeriodicalId":48573,"journal":{"name":"Cambridge Journal of Mathematics","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2018-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Hermitian $K$-theory, Dedekind $\\\\zeta$-functions, and quadratic forms over rings of integers in number fields\",\"authors\":\"Jonas Irgens Kylling, O. Rondigs, P. Ostvaer\",\"doi\":\"10.4310/cjm.2020.v8.n3.a3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We employ the slice spectral sequence, the motivic Steenrod algebra, and Voevodsky's solutions of the Milnor and Bloch-Kato conjectures to calculate the hermitian $K$-groups of rings of integers in number fields. Moreover, we relate the orders of these groups to special values of Dedekind $\\\\zeta$-functions for totally real abelian number fields. Our methods apply more readily to the examples of algebraic $K$-theory and higher Witt-theory, and give a complete set of invariants for quadratic forms over rings of integers in number fields.\",\"PeriodicalId\":48573,\"journal\":{\"name\":\"Cambridge Journal of Mathematics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2018-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cambridge Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/cjm.2020.v8.n3.a3\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cambridge Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/cjm.2020.v8.n3.a3","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Hermitian $K$-theory, Dedekind $\zeta$-functions, and quadratic forms over rings of integers in number fields
We employ the slice spectral sequence, the motivic Steenrod algebra, and Voevodsky's solutions of the Milnor and Bloch-Kato conjectures to calculate the hermitian $K$-groups of rings of integers in number fields. Moreover, we relate the orders of these groups to special values of Dedekind $\zeta$-functions for totally real abelian number fields. Our methods apply more readily to the examples of algebraic $K$-theory and higher Witt-theory, and give a complete set of invariants for quadratic forms over rings of integers in number fields.