利用摄影测量快速提取螺旋桨几何形状

IF 1.5 4区 工程技术 Q2 ENGINEERING, AEROSPACE
Ellande Tang, Soon-Jo Chung
{"title":"利用摄影测量快速提取螺旋桨几何形状","authors":"Ellande Tang, Soon-Jo Chung","doi":"10.1177/17568293221132044","DOIUrl":null,"url":null,"abstract":"As small Uninhabited Aerial Vehicles (sUAS) increase in popularity, computational analysis is increasingly being used to model and improve their performance. However, although propeller performance is one of the primary elements in modelling an aircraft, most manufacturers of propellers for this size of vehicle do not publish geometric information for the propeller. The lack of available geometric data makes simulation of propeller aerodynamics challenging. While techniques exist to accurately extract the 3D geometry of a propeller, these methods are often very expensive, time-consuming, or labor intensive. Additionally, typical 3D scanning techniques produce a 3D mesh that is not useful for techniques such as Blade Element Theory (BET), which rely on knowledge of the 2D cross sections along the propeller span. This paper describes a novel workflow to produce point clouds using readily available photo equipment and software and subsequently extract airfoil and propeller blade parameters at specified stations along the propeller span. The described process can be done with little theoretical knowledge of photogrammetry and with minimal human input. The propeller geometry generated is compared against results of established methods of geometry extraction and good agreement is shown.","PeriodicalId":49053,"journal":{"name":"International Journal of Micro Air Vehicles","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Rapid extraction of propeller geometry using photogrammetry\",\"authors\":\"Ellande Tang, Soon-Jo Chung\",\"doi\":\"10.1177/17568293221132044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As small Uninhabited Aerial Vehicles (sUAS) increase in popularity, computational analysis is increasingly being used to model and improve their performance. However, although propeller performance is one of the primary elements in modelling an aircraft, most manufacturers of propellers for this size of vehicle do not publish geometric information for the propeller. The lack of available geometric data makes simulation of propeller aerodynamics challenging. While techniques exist to accurately extract the 3D geometry of a propeller, these methods are often very expensive, time-consuming, or labor intensive. Additionally, typical 3D scanning techniques produce a 3D mesh that is not useful for techniques such as Blade Element Theory (BET), which rely on knowledge of the 2D cross sections along the propeller span. This paper describes a novel workflow to produce point clouds using readily available photo equipment and software and subsequently extract airfoil and propeller blade parameters at specified stations along the propeller span. The described process can be done with little theoretical knowledge of photogrammetry and with minimal human input. The propeller geometry generated is compared against results of established methods of geometry extraction and good agreement is shown.\",\"PeriodicalId\":49053,\"journal\":{\"name\":\"International Journal of Micro Air Vehicles\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Micro Air Vehicles\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/17568293221132044\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Micro Air Vehicles","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/17568293221132044","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 1

摘要

随着小型无人驾驶飞行器(sUAS)越来越受欢迎,计算分析越来越多地被用于建模和提高其性能。然而,尽管螺旋桨性能是飞机建模的主要因素之一,但这种尺寸的飞行器的大多数螺旋桨制造商都没有公布螺旋桨的几何信息。由于缺乏可用的几何数据,螺旋桨空气动力学模拟具有挑战性。虽然存在精确提取螺旋桨三维几何形状的技术,但这些方法通常非常昂贵、耗时或劳动密集。此外,典型的3D扫描技术产生的3D网格对于诸如叶片单元理论(BET)之类的技术是无用的,该技术依赖于沿螺旋桨跨度的2D横截面的知识。本文描述了一种新的工作流程,使用现成的摄影设备和软件生成点云,然后在螺旋桨跨度的指定位置提取翼型和螺旋桨叶片参数。所描述的过程可以用很少的摄影测量理论知识和最少的人工输入来完成。将生成的螺旋桨几何形状与已建立的几何形状提取方法的结果进行比较,并显示出良好的一致性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rapid extraction of propeller geometry using photogrammetry
As small Uninhabited Aerial Vehicles (sUAS) increase in popularity, computational analysis is increasingly being used to model and improve their performance. However, although propeller performance is one of the primary elements in modelling an aircraft, most manufacturers of propellers for this size of vehicle do not publish geometric information for the propeller. The lack of available geometric data makes simulation of propeller aerodynamics challenging. While techniques exist to accurately extract the 3D geometry of a propeller, these methods are often very expensive, time-consuming, or labor intensive. Additionally, typical 3D scanning techniques produce a 3D mesh that is not useful for techniques such as Blade Element Theory (BET), which rely on knowledge of the 2D cross sections along the propeller span. This paper describes a novel workflow to produce point clouds using readily available photo equipment and software and subsequently extract airfoil and propeller blade parameters at specified stations along the propeller span. The described process can be done with little theoretical knowledge of photogrammetry and with minimal human input. The propeller geometry generated is compared against results of established methods of geometry extraction and good agreement is shown.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.00
自引率
7.10%
发文量
13
审稿时长
>12 weeks
期刊介绍: The role of the International Journal of Micro Air Vehicles is to provide the scientific and engineering community with a peer-reviewed open access journal dedicated to publishing high-quality technical articles summarizing both fundamental and applied research in the area of micro air vehicles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信