阿贝尔子变种的定义域

IF 0.3 4区 数学 Q4 MATHEMATICS
S. Philip
{"title":"阿贝尔子变种的定义域","authors":"S. Philip","doi":"10.5802/jtnb.1214","DOIUrl":null,"url":null,"abstract":"In this paper we study the field of definition of abelian subvarieties $B\\subset A_{\\overline{K}}$ for an abelian variety $A$ over a field $K$ of characteristic $0$. We show that, provided that no isotypic component of $A_{\\overline{K}}$ is simple, there are infinitely many abelian subvarieties of $A_{\\overline{K}}$ with field of definition $K_A$, the field of definition of the endomorphisms of $A_{\\overline{K}}$. This result combined with earlier work of R\\'emond gives an explicit maximum for the minimal degree of a field extension over which an abelian subvariety of $A_{\\overline{K}}$ is defined with varying $A$ of fixed dimension and $K$ of characteristic $0$.","PeriodicalId":48896,"journal":{"name":"Journal De Theorie Des Nombres De Bordeaux","volume":" ","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2020-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fields of definition of abelian subvarieties\",\"authors\":\"S. Philip\",\"doi\":\"10.5802/jtnb.1214\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we study the field of definition of abelian subvarieties $B\\\\subset A_{\\\\overline{K}}$ for an abelian variety $A$ over a field $K$ of characteristic $0$. We show that, provided that no isotypic component of $A_{\\\\overline{K}}$ is simple, there are infinitely many abelian subvarieties of $A_{\\\\overline{K}}$ with field of definition $K_A$, the field of definition of the endomorphisms of $A_{\\\\overline{K}}$. This result combined with earlier work of R\\\\'emond gives an explicit maximum for the minimal degree of a field extension over which an abelian subvariety of $A_{\\\\overline{K}}$ is defined with varying $A$ of fixed dimension and $K$ of characteristic $0$.\",\"PeriodicalId\":48896,\"journal\":{\"name\":\"Journal De Theorie Des Nombres De Bordeaux\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2020-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal De Theorie Des Nombres De Bordeaux\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.5802/jtnb.1214\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal De Theorie Des Nombres De Bordeaux","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5802/jtnb.1214","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们研究了特征为$0$的域$K$上的阿贝尔变种$A$的阿贝尔子变种$B\subet A_。我们证明了,如果$A_。这一结果与R’emond的早期工作相结合,给出了域扩展的最小度的显式极大值,在该域上定义了具有固定维的变化$a$和特征$0$的$K$的阿贝尔子变种$a_{\overline{K}}$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fields of definition of abelian subvarieties
In this paper we study the field of definition of abelian subvarieties $B\subset A_{\overline{K}}$ for an abelian variety $A$ over a field $K$ of characteristic $0$. We show that, provided that no isotypic component of $A_{\overline{K}}$ is simple, there are infinitely many abelian subvarieties of $A_{\overline{K}}$ with field of definition $K_A$, the field of definition of the endomorphisms of $A_{\overline{K}}$. This result combined with earlier work of R\'emond gives an explicit maximum for the minimal degree of a field extension over which an abelian subvariety of $A_{\overline{K}}$ is defined with varying $A$ of fixed dimension and $K$ of characteristic $0$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
35
期刊介绍: The Journal de Théorie des Nombres de Bordeaux publishes original papers on number theory and related topics (not published elsewhere).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信