多临界Schrödinger方程的多解

IF 2.1 2区 数学 Q1 MATHEMATICS
Ziyi Xu, Jianfu Yang
{"title":"多临界Schrödinger方程的多解","authors":"Ziyi Xu, Jianfu Yang","doi":"10.1515/ans-2022-0014","DOIUrl":null,"url":null,"abstract":"Abstract In this article, we investigate the existence of multiple positive solutions to the following multi-critical Schrödinger equation: (0.1) − Δ u + λ V ( x ) u = μ ∣ u ∣ p − 2 u + ∑ i = 1 k ( ∣ x ∣ − ( N − α i ) ∗ ∣ u ∣ 2 i ∗ ) ∣ u ∣ 2 i ∗ − 2 u in R N , u ∈ H 1 ( R N ) , \\left\\{\\begin{array}{l}-\\Delta u+\\lambda V\\left(x)u=\\mu | u{| }^{p-2}u+\\mathop{\\displaystyle \\sum }\\limits_{i=1}^{k}\\left(| x{| }^{-\\left(N-{\\alpha }_{i})}\\ast | u{| }^{{2}_{i}^{\\ast }})| u{| }^{{2}_{i}^{\\ast }-2}u\\hspace{1.0em}\\hspace{0.1em}\\text{in}\\hspace{0.1em}\\hspace{0.33em}{{\\mathbb{R}}}^{N},\\hspace{1.0em}\\\\ u\\hspace{0.33em}\\in {H}^{1}\\left({{\\mathbb{R}}}^{N}),\\hspace{1.0em}\\end{array}\\right. where λ , μ ∈ R + , N ≥ 4 \\lambda ,\\mu \\in {{\\mathbb{R}}}^{+},N\\ge 4 , and 2 i ∗ = N + α i N − 2 {2}_{i}^{\\ast }=\\frac{N+{\\alpha }_{i}}{N-2} with N − 4 < α i < N N-4\\lt {\\alpha }_{i}\\lt N , i = 1 , 2 , … , k i=1,2,\\ldots ,k are critical exponents and 2 < p < 2 min ∗ = min { 2 i ∗ : i = 1 , 2 , … , k } 2\\lt p\\lt {2}_{\\min }^{\\ast }={\\rm{\\min }}\\left\\{{2}_{i}^{\\ast }:i=1,2,\\ldots ,k\\right\\} . Suppose that Ω = int V − 1 ( 0 ) ⊂ R N \\Omega ={\\rm{int}}\\hspace{0.33em}{V}^{-1}\\left(0)\\subset {{\\mathbb{R}}}^{N} is a bounded domain, we show that for λ \\lambda large, problem (0.1) possesses at least cat Ω ( Ω ) {{\\rm{cat}}}_{\\Omega }\\left(\\Omega ) positive solutions.","PeriodicalId":7191,"journal":{"name":"Advanced Nonlinear Studies","volume":"22 1","pages":"273 - 288"},"PeriodicalIF":2.1000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Multiple solutions to multi-critical Schrödinger equations\",\"authors\":\"Ziyi Xu, Jianfu Yang\",\"doi\":\"10.1515/ans-2022-0014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this article, we investigate the existence of multiple positive solutions to the following multi-critical Schrödinger equation: (0.1) − Δ u + λ V ( x ) u = μ ∣ u ∣ p − 2 u + ∑ i = 1 k ( ∣ x ∣ − ( N − α i ) ∗ ∣ u ∣ 2 i ∗ ) ∣ u ∣ 2 i ∗ − 2 u in R N , u ∈ H 1 ( R N ) , \\\\left\\\\{\\\\begin{array}{l}-\\\\Delta u+\\\\lambda V\\\\left(x)u=\\\\mu | u{| }^{p-2}u+\\\\mathop{\\\\displaystyle \\\\sum }\\\\limits_{i=1}^{k}\\\\left(| x{| }^{-\\\\left(N-{\\\\alpha }_{i})}\\\\ast | u{| }^{{2}_{i}^{\\\\ast }})| u{| }^{{2}_{i}^{\\\\ast }-2}u\\\\hspace{1.0em}\\\\hspace{0.1em}\\\\text{in}\\\\hspace{0.1em}\\\\hspace{0.33em}{{\\\\mathbb{R}}}^{N},\\\\hspace{1.0em}\\\\\\\\ u\\\\hspace{0.33em}\\\\in {H}^{1}\\\\left({{\\\\mathbb{R}}}^{N}),\\\\hspace{1.0em}\\\\end{array}\\\\right. where λ , μ ∈ R + , N ≥ 4 \\\\lambda ,\\\\mu \\\\in {{\\\\mathbb{R}}}^{+},N\\\\ge 4 , and 2 i ∗ = N + α i N − 2 {2}_{i}^{\\\\ast }=\\\\frac{N+{\\\\alpha }_{i}}{N-2} with N − 4 < α i < N N-4\\\\lt {\\\\alpha }_{i}\\\\lt N , i = 1 , 2 , … , k i=1,2,\\\\ldots ,k are critical exponents and 2 < p < 2 min ∗ = min { 2 i ∗ : i = 1 , 2 , … , k } 2\\\\lt p\\\\lt {2}_{\\\\min }^{\\\\ast }={\\\\rm{\\\\min }}\\\\left\\\\{{2}_{i}^{\\\\ast }:i=1,2,\\\\ldots ,k\\\\right\\\\} . Suppose that Ω = int V − 1 ( 0 ) ⊂ R N \\\\Omega ={\\\\rm{int}}\\\\hspace{0.33em}{V}^{-1}\\\\left(0)\\\\subset {{\\\\mathbb{R}}}^{N} is a bounded domain, we show that for λ \\\\lambda large, problem (0.1) possesses at least cat Ω ( Ω ) {{\\\\rm{cat}}}_{\\\\Omega }\\\\left(\\\\Omega ) positive solutions.\",\"PeriodicalId\":7191,\"journal\":{\"name\":\"Advanced Nonlinear Studies\",\"volume\":\"22 1\",\"pages\":\"273 - 288\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Nonlinear Studies\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/ans-2022-0014\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Nonlinear Studies","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/ans-2022-0014","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

摘要

在这篇文章中,我们正在研究应用多学科薛定谔方程的存在:(0。1)−Δu + V (x) u =λμ∣u p∣−2 u +∑x i = 1 k(∣∣−(N−αi)∗∣u∣2我我∗∗)∣u∣2−2 in R N u, u H∈R 1 (N),向左拐\{\开始{}{}- l阵lambda \三角洲u + V向左拐(x) u = \ mu | u ^ {p - 2}{|的u + mathop {\ displaystyle sum的\ limits_ {i = 1} k ^{} \向左拐(| x{|} ^{\向左拐(N - {{i})}的阿尔法的\在| u的{|}^ {{2}{i) ^{\在}})|的u {|} ^ {{2} {i} ^{\在的u - 2的hspace {1 . 0em} \ hspace = 0。1em的文本{在}\ hspace{0。1em} hspace {0 . 33em} {{\ mathbb {R}}} N ^ {}, {1 . 0em} hspace \ \ u hspace{0。33em} \ H在{}^{1}向左拐({{R \ mathbb {}}} ^ {N}),伦敦hspace {1 . 0em} \ \{阵列望远镜的吧。λ,哪里μ+∈R, N≥4你在{{\ \ lambda, mathbb {R}}} + ^ {}, N \ ge 4和2我∗= N +αi N−2{2}_我{}^{\在}= frac {N + {\ {i}}{已经开始了的阿尔法的N和N−4 <αi < N-4它{\阿尔法}{\ N,这是我的k = 1, 2, ... i = 1.2, \ ldots, k是连接exponents和< p < 2 min i∗∗= min {2: i = 1, 2, ... k的\中尉p \ \{2}{敏}^{\在}的= min{\罗{}}的左派\ {{2}{i} ^{\在}:i = 1.2, ldots, k对\)。想那Ω= int V−1(0 - 9)⊂R N \ω={\罗{int)}} hspace {0 V . 33em}{} ^{- 1}左(0 - 9)\子集{{R \ mathbb {}}} ^ {N}是一个bounded域名,我们为λ\ lambda大秀那,问题(0。1)possesses至少油漆Ω(Ω)的油漆{{\罗{}}}{\ Omega欧米茄的左边(\)积极解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multiple solutions to multi-critical Schrödinger equations
Abstract In this article, we investigate the existence of multiple positive solutions to the following multi-critical Schrödinger equation: (0.1) − Δ u + λ V ( x ) u = μ ∣ u ∣ p − 2 u + ∑ i = 1 k ( ∣ x ∣ − ( N − α i ) ∗ ∣ u ∣ 2 i ∗ ) ∣ u ∣ 2 i ∗ − 2 u in R N , u ∈ H 1 ( R N ) , \left\{\begin{array}{l}-\Delta u+\lambda V\left(x)u=\mu | u{| }^{p-2}u+\mathop{\displaystyle \sum }\limits_{i=1}^{k}\left(| x{| }^{-\left(N-{\alpha }_{i})}\ast | u{| }^{{2}_{i}^{\ast }})| u{| }^{{2}_{i}^{\ast }-2}u\hspace{1.0em}\hspace{0.1em}\text{in}\hspace{0.1em}\hspace{0.33em}{{\mathbb{R}}}^{N},\hspace{1.0em}\\ u\hspace{0.33em}\in {H}^{1}\left({{\mathbb{R}}}^{N}),\hspace{1.0em}\end{array}\right. where λ , μ ∈ R + , N ≥ 4 \lambda ,\mu \in {{\mathbb{R}}}^{+},N\ge 4 , and 2 i ∗ = N + α i N − 2 {2}_{i}^{\ast }=\frac{N+{\alpha }_{i}}{N-2} with N − 4 < α i < N N-4\lt {\alpha }_{i}\lt N , i = 1 , 2 , … , k i=1,2,\ldots ,k are critical exponents and 2 < p < 2 min ∗ = min { 2 i ∗ : i = 1 , 2 , … , k } 2\lt p\lt {2}_{\min }^{\ast }={\rm{\min }}\left\{{2}_{i}^{\ast }:i=1,2,\ldots ,k\right\} . Suppose that Ω = int V − 1 ( 0 ) ⊂ R N \Omega ={\rm{int}}\hspace{0.33em}{V}^{-1}\left(0)\subset {{\mathbb{R}}}^{N} is a bounded domain, we show that for λ \lambda large, problem (0.1) possesses at least cat Ω ( Ω ) {{\rm{cat}}}_{\Omega }\left(\Omega ) positive solutions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.00
自引率
5.60%
发文量
22
审稿时长
12 months
期刊介绍: Advanced Nonlinear Studies is aimed at publishing papers on nonlinear problems, particulalry those involving Differential Equations, Dynamical Systems, and related areas. It will also publish novel and interesting applications of these areas to problems in engineering and the sciences. Papers submitted to this journal must contain original, timely, and significant results. Articles will generally, but not always, be published in the order when the final copies were received.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信