{"title":"多临界Schrödinger方程的多解","authors":"Ziyi Xu, Jianfu Yang","doi":"10.1515/ans-2022-0014","DOIUrl":null,"url":null,"abstract":"Abstract In this article, we investigate the existence of multiple positive solutions to the following multi-critical Schrödinger equation: (0.1) − Δ u + λ V ( x ) u = μ ∣ u ∣ p − 2 u + ∑ i = 1 k ( ∣ x ∣ − ( N − α i ) ∗ ∣ u ∣ 2 i ∗ ) ∣ u ∣ 2 i ∗ − 2 u in R N , u ∈ H 1 ( R N ) , \\left\\{\\begin{array}{l}-\\Delta u+\\lambda V\\left(x)u=\\mu | u{| }^{p-2}u+\\mathop{\\displaystyle \\sum }\\limits_{i=1}^{k}\\left(| x{| }^{-\\left(N-{\\alpha }_{i})}\\ast | u{| }^{{2}_{i}^{\\ast }})| u{| }^{{2}_{i}^{\\ast }-2}u\\hspace{1.0em}\\hspace{0.1em}\\text{in}\\hspace{0.1em}\\hspace{0.33em}{{\\mathbb{R}}}^{N},\\hspace{1.0em}\\\\ u\\hspace{0.33em}\\in {H}^{1}\\left({{\\mathbb{R}}}^{N}),\\hspace{1.0em}\\end{array}\\right. where λ , μ ∈ R + , N ≥ 4 \\lambda ,\\mu \\in {{\\mathbb{R}}}^{+},N\\ge 4 , and 2 i ∗ = N + α i N − 2 {2}_{i}^{\\ast }=\\frac{N+{\\alpha }_{i}}{N-2} with N − 4 < α i < N N-4\\lt {\\alpha }_{i}\\lt N , i = 1 , 2 , … , k i=1,2,\\ldots ,k are critical exponents and 2 < p < 2 min ∗ = min { 2 i ∗ : i = 1 , 2 , … , k } 2\\lt p\\lt {2}_{\\min }^{\\ast }={\\rm{\\min }}\\left\\{{2}_{i}^{\\ast }:i=1,2,\\ldots ,k\\right\\} . Suppose that Ω = int V − 1 ( 0 ) ⊂ R N \\Omega ={\\rm{int}}\\hspace{0.33em}{V}^{-1}\\left(0)\\subset {{\\mathbb{R}}}^{N} is a bounded domain, we show that for λ \\lambda large, problem (0.1) possesses at least cat Ω ( Ω ) {{\\rm{cat}}}_{\\Omega }\\left(\\Omega ) positive solutions.","PeriodicalId":7191,"journal":{"name":"Advanced Nonlinear Studies","volume":"22 1","pages":"273 - 288"},"PeriodicalIF":2.1000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Multiple solutions to multi-critical Schrödinger equations\",\"authors\":\"Ziyi Xu, Jianfu Yang\",\"doi\":\"10.1515/ans-2022-0014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this article, we investigate the existence of multiple positive solutions to the following multi-critical Schrödinger equation: (0.1) − Δ u + λ V ( x ) u = μ ∣ u ∣ p − 2 u + ∑ i = 1 k ( ∣ x ∣ − ( N − α i ) ∗ ∣ u ∣ 2 i ∗ ) ∣ u ∣ 2 i ∗ − 2 u in R N , u ∈ H 1 ( R N ) , \\\\left\\\\{\\\\begin{array}{l}-\\\\Delta u+\\\\lambda V\\\\left(x)u=\\\\mu | u{| }^{p-2}u+\\\\mathop{\\\\displaystyle \\\\sum }\\\\limits_{i=1}^{k}\\\\left(| x{| }^{-\\\\left(N-{\\\\alpha }_{i})}\\\\ast | u{| }^{{2}_{i}^{\\\\ast }})| u{| }^{{2}_{i}^{\\\\ast }-2}u\\\\hspace{1.0em}\\\\hspace{0.1em}\\\\text{in}\\\\hspace{0.1em}\\\\hspace{0.33em}{{\\\\mathbb{R}}}^{N},\\\\hspace{1.0em}\\\\\\\\ u\\\\hspace{0.33em}\\\\in {H}^{1}\\\\left({{\\\\mathbb{R}}}^{N}),\\\\hspace{1.0em}\\\\end{array}\\\\right. where λ , μ ∈ R + , N ≥ 4 \\\\lambda ,\\\\mu \\\\in {{\\\\mathbb{R}}}^{+},N\\\\ge 4 , and 2 i ∗ = N + α i N − 2 {2}_{i}^{\\\\ast }=\\\\frac{N+{\\\\alpha }_{i}}{N-2} with N − 4 < α i < N N-4\\\\lt {\\\\alpha }_{i}\\\\lt N , i = 1 , 2 , … , k i=1,2,\\\\ldots ,k are critical exponents and 2 < p < 2 min ∗ = min { 2 i ∗ : i = 1 , 2 , … , k } 2\\\\lt p\\\\lt {2}_{\\\\min }^{\\\\ast }={\\\\rm{\\\\min }}\\\\left\\\\{{2}_{i}^{\\\\ast }:i=1,2,\\\\ldots ,k\\\\right\\\\} . Suppose that Ω = int V − 1 ( 0 ) ⊂ R N \\\\Omega ={\\\\rm{int}}\\\\hspace{0.33em}{V}^{-1}\\\\left(0)\\\\subset {{\\\\mathbb{R}}}^{N} is a bounded domain, we show that for λ \\\\lambda large, problem (0.1) possesses at least cat Ω ( Ω ) {{\\\\rm{cat}}}_{\\\\Omega }\\\\left(\\\\Omega ) positive solutions.\",\"PeriodicalId\":7191,\"journal\":{\"name\":\"Advanced Nonlinear Studies\",\"volume\":\"22 1\",\"pages\":\"273 - 288\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Nonlinear Studies\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/ans-2022-0014\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Nonlinear Studies","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/ans-2022-0014","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3
摘要
在这篇文章中,我们正在研究应用多学科薛定谔方程的存在:(0。1)−Δu + V (x) u =λμ∣u p∣−2 u +∑x i = 1 k(∣∣−(N−αi)∗∣u∣2我我∗∗)∣u∣2−2 in R N u, u H∈R 1 (N),向左拐\{\开始{}{}- l阵lambda \三角洲u + V向左拐(x) u = \ mu | u ^ {p - 2}{|的u + mathop {\ displaystyle sum的\ limits_ {i = 1} k ^{} \向左拐(| x{|} ^{\向左拐(N - {{i})}的阿尔法的\在| u的{|}^ {{2}{i) ^{\在}})|的u {|} ^ {{2} {i} ^{\在的u - 2的hspace {1 . 0em} \ hspace = 0。1em的文本{在}\ hspace{0。1em} hspace {0 . 33em} {{\ mathbb {R}}} N ^ {}, {1 . 0em} hspace \ \ u hspace{0。33em} \ H在{}^{1}向左拐({{R \ mathbb {}}} ^ {N}),伦敦hspace {1 . 0em} \ \{阵列望远镜的吧。λ,哪里μ+∈R, N≥4你在{{\ \ lambda, mathbb {R}}} + ^ {}, N \ ge 4和2我∗= N +αi N−2{2}_我{}^{\在}= frac {N + {\ {i}}{已经开始了的阿尔法的N和N−4 <αi < N-4它{\阿尔法}{\ N,这是我的k = 1, 2, ... i = 1.2, \ ldots, k是连接exponents和< p < 2 min i∗∗= min {2: i = 1, 2, ... k的\中尉p \ \{2}{敏}^{\在}的= min{\罗{}}的左派\ {{2}{i} ^{\在}:i = 1.2, ldots, k对\)。想那Ω= int V−1(0 - 9)⊂R N \ω={\罗{int)}} hspace {0 V . 33em}{} ^{- 1}左(0 - 9)\子集{{R \ mathbb {}}} ^ {N}是一个bounded域名,我们为λ\ lambda大秀那,问题(0。1)possesses至少油漆Ω(Ω)的油漆{{\罗{}}}{\ Omega欧米茄的左边(\)积极解决方案。
Multiple solutions to multi-critical Schrödinger equations
Abstract In this article, we investigate the existence of multiple positive solutions to the following multi-critical Schrödinger equation: (0.1) − Δ u + λ V ( x ) u = μ ∣ u ∣ p − 2 u + ∑ i = 1 k ( ∣ x ∣ − ( N − α i ) ∗ ∣ u ∣ 2 i ∗ ) ∣ u ∣ 2 i ∗ − 2 u in R N , u ∈ H 1 ( R N ) , \left\{\begin{array}{l}-\Delta u+\lambda V\left(x)u=\mu | u{| }^{p-2}u+\mathop{\displaystyle \sum }\limits_{i=1}^{k}\left(| x{| }^{-\left(N-{\alpha }_{i})}\ast | u{| }^{{2}_{i}^{\ast }})| u{| }^{{2}_{i}^{\ast }-2}u\hspace{1.0em}\hspace{0.1em}\text{in}\hspace{0.1em}\hspace{0.33em}{{\mathbb{R}}}^{N},\hspace{1.0em}\\ u\hspace{0.33em}\in {H}^{1}\left({{\mathbb{R}}}^{N}),\hspace{1.0em}\end{array}\right. where λ , μ ∈ R + , N ≥ 4 \lambda ,\mu \in {{\mathbb{R}}}^{+},N\ge 4 , and 2 i ∗ = N + α i N − 2 {2}_{i}^{\ast }=\frac{N+{\alpha }_{i}}{N-2} with N − 4 < α i < N N-4\lt {\alpha }_{i}\lt N , i = 1 , 2 , … , k i=1,2,\ldots ,k are critical exponents and 2 < p < 2 min ∗ = min { 2 i ∗ : i = 1 , 2 , … , k } 2\lt p\lt {2}_{\min }^{\ast }={\rm{\min }}\left\{{2}_{i}^{\ast }:i=1,2,\ldots ,k\right\} . Suppose that Ω = int V − 1 ( 0 ) ⊂ R N \Omega ={\rm{int}}\hspace{0.33em}{V}^{-1}\left(0)\subset {{\mathbb{R}}}^{N} is a bounded domain, we show that for λ \lambda large, problem (0.1) possesses at least cat Ω ( Ω ) {{\rm{cat}}}_{\Omega }\left(\Omega ) positive solutions.
期刊介绍:
Advanced Nonlinear Studies is aimed at publishing papers on nonlinear problems, particulalry those involving Differential Equations, Dynamical Systems, and related areas. It will also publish novel and interesting applications of these areas to problems in engineering and the sciences. Papers submitted to this journal must contain original, timely, and significant results. Articles will generally, but not always, be published in the order when the final copies were received.