{"title":"缺失的数据分析与足够的降维","authors":"Siming Zheng, Alan T. K. Wan, Yong Zhou","doi":"10.1002/cjs.11700","DOIUrl":null,"url":null,"abstract":"<p>This article develops a two-step procedure for estimating the unknown parameters in a model that contains a fixed but large number of covariates, more moment conditions than unknown parameters, and responses that are missing at random. We propose a sufficient dimension reduction method to be implemented in the first step and prove that the method is asymptotically valid. In the second step, we apply three well-known missing data handling mechanisms together with the generalized method of moments to the reduced-dimensional subspace to obtain estimates of unknown parameters. We investigate the theoretical properties of the proposed methods, including the effects of dimension reduction on the asymptotic distributions of the estimators. Our results refute a claim in an earlier study that dimension reduction yields the same asymptotic distributions of estimators as when the reduced-dimensional structure is the true structure. We illustrate our method by way of a simulation study and a real clinical trial data example.</p>","PeriodicalId":55281,"journal":{"name":"Canadian Journal of Statistics-Revue Canadienne De Statistique","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2022-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Missing data analysis with sufficient dimension reduction\",\"authors\":\"Siming Zheng, Alan T. K. Wan, Yong Zhou\",\"doi\":\"10.1002/cjs.11700\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This article develops a two-step procedure for estimating the unknown parameters in a model that contains a fixed but large number of covariates, more moment conditions than unknown parameters, and responses that are missing at random. We propose a sufficient dimension reduction method to be implemented in the first step and prove that the method is asymptotically valid. In the second step, we apply three well-known missing data handling mechanisms together with the generalized method of moments to the reduced-dimensional subspace to obtain estimates of unknown parameters. We investigate the theoretical properties of the proposed methods, including the effects of dimension reduction on the asymptotic distributions of the estimators. Our results refute a claim in an earlier study that dimension reduction yields the same asymptotic distributions of estimators as when the reduced-dimensional structure is the true structure. We illustrate our method by way of a simulation study and a real clinical trial data example.</p>\",\"PeriodicalId\":55281,\"journal\":{\"name\":\"Canadian Journal of Statistics-Revue Canadienne De Statistique\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2022-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Canadian Journal of Statistics-Revue Canadienne De Statistique\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cjs.11700\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Statistics-Revue Canadienne De Statistique","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cjs.11700","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Missing data analysis with sufficient dimension reduction
This article develops a two-step procedure for estimating the unknown parameters in a model that contains a fixed but large number of covariates, more moment conditions than unknown parameters, and responses that are missing at random. We propose a sufficient dimension reduction method to be implemented in the first step and prove that the method is asymptotically valid. In the second step, we apply three well-known missing data handling mechanisms together with the generalized method of moments to the reduced-dimensional subspace to obtain estimates of unknown parameters. We investigate the theoretical properties of the proposed methods, including the effects of dimension reduction on the asymptotic distributions of the estimators. Our results refute a claim in an earlier study that dimension reduction yields the same asymptotic distributions of estimators as when the reduced-dimensional structure is the true structure. We illustrate our method by way of a simulation study and a real clinical trial data example.
期刊介绍:
The Canadian Journal of Statistics is the official journal of the Statistical Society of Canada. It has a reputation internationally as an excellent journal. The editorial board is comprised of statistical scientists with applied, computational, methodological, theoretical and probabilistic interests. Their role is to ensure that the journal continues to provide an international forum for the discipline of Statistics.
The journal seeks papers making broad points of interest to many readers, whereas papers making important points of more specific interest are better placed in more specialized journals. The levels of innovation and impact are key in the evaluation of submitted manuscripts.