缺失的数据分析与足够的降维

IF 0.8 4区 数学 Q3 STATISTICS & PROBABILITY
Siming Zheng, Alan T. K. Wan, Yong Zhou
{"title":"缺失的数据分析与足够的降维","authors":"Siming Zheng,&nbsp;Alan T. K. Wan,&nbsp;Yong Zhou","doi":"10.1002/cjs.11700","DOIUrl":null,"url":null,"abstract":"<p>This article develops a two-step procedure for estimating the unknown parameters in a model that contains a fixed but large number of covariates, more moment conditions than unknown parameters, and responses that are missing at random. We propose a sufficient dimension reduction method to be implemented in the first step and prove that the method is asymptotically valid. In the second step, we apply three well-known missing data handling mechanisms together with the generalized method of moments to the reduced-dimensional subspace to obtain estimates of unknown parameters. We investigate the theoretical properties of the proposed methods, including the effects of dimension reduction on the asymptotic distributions of the estimators. Our results refute a claim in an earlier study that dimension reduction yields the same asymptotic distributions of estimators as when the reduced-dimensional structure is the true structure. We illustrate our method by way of a simulation study and a real clinical trial data example.</p>","PeriodicalId":55281,"journal":{"name":"Canadian Journal of Statistics-Revue Canadienne De Statistique","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2022-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Missing data analysis with sufficient dimension reduction\",\"authors\":\"Siming Zheng,&nbsp;Alan T. K. Wan,&nbsp;Yong Zhou\",\"doi\":\"10.1002/cjs.11700\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This article develops a two-step procedure for estimating the unknown parameters in a model that contains a fixed but large number of covariates, more moment conditions than unknown parameters, and responses that are missing at random. We propose a sufficient dimension reduction method to be implemented in the first step and prove that the method is asymptotically valid. In the second step, we apply three well-known missing data handling mechanisms together with the generalized method of moments to the reduced-dimensional subspace to obtain estimates of unknown parameters. We investigate the theoretical properties of the proposed methods, including the effects of dimension reduction on the asymptotic distributions of the estimators. Our results refute a claim in an earlier study that dimension reduction yields the same asymptotic distributions of estimators as when the reduced-dimensional structure is the true structure. We illustrate our method by way of a simulation study and a real clinical trial data example.</p>\",\"PeriodicalId\":55281,\"journal\":{\"name\":\"Canadian Journal of Statistics-Revue Canadienne De Statistique\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2022-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Canadian Journal of Statistics-Revue Canadienne De Statistique\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cjs.11700\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Statistics-Revue Canadienne De Statistique","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cjs.11700","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

本文开发了一个两步程序,用于估计模型中的未知参数,该模型包含固定但大量的协变量,比未知参数更多的力矩条件,以及随机丢失的响应。我们提出了一个在第一步中实现的充分降维方法,并证明了该方法的渐近有效性。在第二步中,我们将三种已知的缺失数据处理机制与广义矩方法一起应用于降维子空间,以获得未知参数的估计。我们研究了所提方法的理论性质,包括降维对估计量渐近分布的影响。我们的结果驳斥了先前研究中的一个说法,即当降维结构是真实结构时,降维产生的估计量的渐近分布与降维结构相同。我们通过一个模拟研究和一个真实的临床试验数据例子来说明我们的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Missing data analysis with sufficient dimension reduction

This article develops a two-step procedure for estimating the unknown parameters in a model that contains a fixed but large number of covariates, more moment conditions than unknown parameters, and responses that are missing at random. We propose a sufficient dimension reduction method to be implemented in the first step and prove that the method is asymptotically valid. In the second step, we apply three well-known missing data handling mechanisms together with the generalized method of moments to the reduced-dimensional subspace to obtain estimates of unknown parameters. We investigate the theoretical properties of the proposed methods, including the effects of dimension reduction on the asymptotic distributions of the estimators. Our results refute a claim in an earlier study that dimension reduction yields the same asymptotic distributions of estimators as when the reduced-dimensional structure is the true structure. We illustrate our method by way of a simulation study and a real clinical trial data example.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
62
审稿时长
>12 weeks
期刊介绍: The Canadian Journal of Statistics is the official journal of the Statistical Society of Canada. It has a reputation internationally as an excellent journal. The editorial board is comprised of statistical scientists with applied, computational, methodological, theoretical and probabilistic interests. Their role is to ensure that the journal continues to provide an international forum for the discipline of Statistics. The journal seeks papers making broad points of interest to many readers, whereas papers making important points of more specific interest are better placed in more specialized journals. The levels of innovation and impact are key in the evaluation of submitted manuscripts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信