{"title":"网格计算中基于不确定性感知T2SS的任务调度动态q学习框架","authors":"K. Bhargavi, S. Shiva","doi":"10.2478/cait-2022-0027","DOIUrl":null,"url":null,"abstract":"Abstract Task scheduling is an important activity in parallel and distributed computing environment like grid because the performance depends on it. Task scheduling gets affected by behavioral and primary uncertainties. Behavioral uncertainty arises due to variability in the workload characteristics, size of data and dynamic partitioning of applications. Primary uncertainty arises due to variability in data handling capabilities, processor context switching and interplay between the computation intensive applications. In this paper behavioral uncertainty and primary uncertainty with respect to tasks and resources parameters are managed using Type-2-Soft-Set (T2SS) theory. Dyna-Q-Learning task scheduling technique is designed over the uncertainty free tasks and resource parameters. The results obtained are further validated through simulation using GridSim simulator. The performance is good based on metrics such as learning rate, accuracy, execution time and resource utilization rate.","PeriodicalId":45562,"journal":{"name":"Cybernetics and Information Technologies","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Uncertainty Aware T2SS Based Dyna-Q-Learning Framework for Task Scheduling in Grid Computing\",\"authors\":\"K. Bhargavi, S. Shiva\",\"doi\":\"10.2478/cait-2022-0027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Task scheduling is an important activity in parallel and distributed computing environment like grid because the performance depends on it. Task scheduling gets affected by behavioral and primary uncertainties. Behavioral uncertainty arises due to variability in the workload characteristics, size of data and dynamic partitioning of applications. Primary uncertainty arises due to variability in data handling capabilities, processor context switching and interplay between the computation intensive applications. In this paper behavioral uncertainty and primary uncertainty with respect to tasks and resources parameters are managed using Type-2-Soft-Set (T2SS) theory. Dyna-Q-Learning task scheduling technique is designed over the uncertainty free tasks and resource parameters. The results obtained are further validated through simulation using GridSim simulator. The performance is good based on metrics such as learning rate, accuracy, execution time and resource utilization rate.\",\"PeriodicalId\":45562,\"journal\":{\"name\":\"Cybernetics and Information Technologies\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cybernetics and Information Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/cait-2022-0027\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cybernetics and Information Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/cait-2022-0027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Uncertainty Aware T2SS Based Dyna-Q-Learning Framework for Task Scheduling in Grid Computing
Abstract Task scheduling is an important activity in parallel and distributed computing environment like grid because the performance depends on it. Task scheduling gets affected by behavioral and primary uncertainties. Behavioral uncertainty arises due to variability in the workload characteristics, size of data and dynamic partitioning of applications. Primary uncertainty arises due to variability in data handling capabilities, processor context switching and interplay between the computation intensive applications. In this paper behavioral uncertainty and primary uncertainty with respect to tasks and resources parameters are managed using Type-2-Soft-Set (T2SS) theory. Dyna-Q-Learning task scheduling technique is designed over the uncertainty free tasks and resource parameters. The results obtained are further validated through simulation using GridSim simulator. The performance is good based on metrics such as learning rate, accuracy, execution time and resource utilization rate.