混凝土用硝酸钙微胶囊自愈效能的表征

Q4 Materials Science
A. A. Taqa, M. Al-Ansari, A. Senouci, Marwa M. Hassan, A. Shaat, Mohamed O. Mohsen
{"title":"混凝土用硝酸钙微胶囊自愈效能的表征","authors":"A. A. Taqa, M. Al-Ansari, A. Senouci, Marwa M. Hassan, A. Shaat, Mohamed O. Mohsen","doi":"10.1504/IJMMP.2019.10021509","DOIUrl":null,"url":null,"abstract":"This study presents characterisation of concrete samples containing 0.75% by cement weight of modified calcium nitrate self-healing microcapsules. The phased array ultrasonic testing method was used to investigate the healing efficiency of calcium nitrate microcapsules in concrete. The method is a novel non-destructive testing technique that is commonly used for detecting the defects in welding. Concrete beams were prepared from the control mix (without microcapsules) and mixes containing 0.75% by weight of cement of calcium nitrate microcapsules. After 28 days of moist curing, the phased array ultrasonic images of all beams were captured before loading, after applying 60% of the ultimate flexural load, and after 3 and 7 days of accelerated healing. Moreover, scanning electron microscopy images taken from fractured surfaces of the beams that were loaded up to failure before healing were compared to those of the beams that were healed for 7 days and loaded up to failure.","PeriodicalId":35049,"journal":{"name":"International Journal of Microstructure and Materials Properties","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Characterisation of self-healing efficiency of calcium nitrate microcapsules for concrete applications\",\"authors\":\"A. A. Taqa, M. Al-Ansari, A. Senouci, Marwa M. Hassan, A. Shaat, Mohamed O. Mohsen\",\"doi\":\"10.1504/IJMMP.2019.10021509\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study presents characterisation of concrete samples containing 0.75% by cement weight of modified calcium nitrate self-healing microcapsules. The phased array ultrasonic testing method was used to investigate the healing efficiency of calcium nitrate microcapsules in concrete. The method is a novel non-destructive testing technique that is commonly used for detecting the defects in welding. Concrete beams were prepared from the control mix (without microcapsules) and mixes containing 0.75% by weight of cement of calcium nitrate microcapsules. After 28 days of moist curing, the phased array ultrasonic images of all beams were captured before loading, after applying 60% of the ultimate flexural load, and after 3 and 7 days of accelerated healing. Moreover, scanning electron microscopy images taken from fractured surfaces of the beams that were loaded up to failure before healing were compared to those of the beams that were healed for 7 days and loaded up to failure.\",\"PeriodicalId\":35049,\"journal\":{\"name\":\"International Journal of Microstructure and Materials Properties\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Microstructure and Materials Properties\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJMMP.2019.10021509\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Microstructure and Materials Properties","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJMMP.2019.10021509","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 1

摘要

本研究提出了混凝土样品含有0.75%的水泥重量的改性硝酸钙自愈微胶囊的特性。采用相控阵超声检测方法对硝酸钙微胶囊在混凝土中的愈合效果进行了研究。该方法是一种新型的无损检测技术,通常用于检测焊接缺陷。用对照混合料(不含微胶囊)和含有0.75%重量的硝酸钙微胶囊水泥混合料配制混凝土梁。在28天的湿固化后,在加载前,在施加60%的极限弯曲载荷后,在3天和7天的加速愈合后,捕获所有梁的相控阵超声图像。此外,在愈合之前,从加载到失效的梁的断裂表面拍摄的扫描电镜图像与愈合7天并加载到失效的梁的图像进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Characterisation of self-healing efficiency of calcium nitrate microcapsules for concrete applications
This study presents characterisation of concrete samples containing 0.75% by cement weight of modified calcium nitrate self-healing microcapsules. The phased array ultrasonic testing method was used to investigate the healing efficiency of calcium nitrate microcapsules in concrete. The method is a novel non-destructive testing technique that is commonly used for detecting the defects in welding. Concrete beams were prepared from the control mix (without microcapsules) and mixes containing 0.75% by weight of cement of calcium nitrate microcapsules. After 28 days of moist curing, the phased array ultrasonic images of all beams were captured before loading, after applying 60% of the ultimate flexural load, and after 3 and 7 days of accelerated healing. Moreover, scanning electron microscopy images taken from fractured surfaces of the beams that were loaded up to failure before healing were compared to those of the beams that were healed for 7 days and loaded up to failure.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Microstructure and Materials Properties
International Journal of Microstructure and Materials Properties Materials Science-Materials Science (all)
CiteScore
0.70
自引率
0.00%
发文量
27
期刊介绍: IJMMP publishes contributions on mechanical, electrical, magnetic and optical properties of metal, ceramic and polymeric materials in terms of the crystal structure and microstructure. Papers treat all aspects of materials, i.e., their selection, characterisation, transformation, modification, testing, and evaluation in the decision-making phase of product design/manufacture. Contributions in the fields of product, design and improvement of material properties in various production processes are welcome, along with scientific papers on new technologies, processes and materials, and on the modelling of processes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信