{"title":"非平稳随机过程非凸动态规划中值函数的次微分","authors":"B. Mordukhovich, Nobusumi Sagara","doi":"10.31390/COSA.13.3.05","DOIUrl":null,"url":null,"abstract":"The main goal of this paper is to apply the machinery of variational analysis and generalized differentiation to study infinite horizon stochastic dynamic programming (DP) with discrete time in the Banach space setting without convexity assumptions. Unlike to standard stochastic DP with stationary Markov processes, we investigate here stochastic DP in $L^p$ spaces to deal with nonstationary stochastic processes, which describe a more flexible learning procedure for the decision-maker. Our main concern is to calculate generalized subgradients of the corresponding value function and to derive necessary conditions for optimality in terms of the stochastic Euler inclusion under appropriate Lipschitzian assumptions. The usage of the subdifferential formula for integral functionals on $L^p$ spaces allows us, in particular, to find verifiable conditions to ensure smoothness of the value function without any convexity and/or interiority assumptions.","PeriodicalId":53434,"journal":{"name":"Communications on Stochastic Analysis","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Subdifferentials of Value Functions in Nonconvex Dynamic Programming for Nonstationary Stochastic Processes\",\"authors\":\"B. Mordukhovich, Nobusumi Sagara\",\"doi\":\"10.31390/COSA.13.3.05\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The main goal of this paper is to apply the machinery of variational analysis and generalized differentiation to study infinite horizon stochastic dynamic programming (DP) with discrete time in the Banach space setting without convexity assumptions. Unlike to standard stochastic DP with stationary Markov processes, we investigate here stochastic DP in $L^p$ spaces to deal with nonstationary stochastic processes, which describe a more flexible learning procedure for the decision-maker. Our main concern is to calculate generalized subgradients of the corresponding value function and to derive necessary conditions for optimality in terms of the stochastic Euler inclusion under appropriate Lipschitzian assumptions. The usage of the subdifferential formula for integral functionals on $L^p$ spaces allows us, in particular, to find verifiable conditions to ensure smoothness of the value function without any convexity and/or interiority assumptions.\",\"PeriodicalId\":53434,\"journal\":{\"name\":\"Communications on Stochastic Analysis\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications on Stochastic Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31390/COSA.13.3.05\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications on Stochastic Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31390/COSA.13.3.05","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
Subdifferentials of Value Functions in Nonconvex Dynamic Programming for Nonstationary Stochastic Processes
The main goal of this paper is to apply the machinery of variational analysis and generalized differentiation to study infinite horizon stochastic dynamic programming (DP) with discrete time in the Banach space setting without convexity assumptions. Unlike to standard stochastic DP with stationary Markov processes, we investigate here stochastic DP in $L^p$ spaces to deal with nonstationary stochastic processes, which describe a more flexible learning procedure for the decision-maker. Our main concern is to calculate generalized subgradients of the corresponding value function and to derive necessary conditions for optimality in terms of the stochastic Euler inclusion under appropriate Lipschitzian assumptions. The usage of the subdifferential formula for integral functionals on $L^p$ spaces allows us, in particular, to find verifiable conditions to ensure smoothness of the value function without any convexity and/or interiority assumptions.
期刊介绍:
The journal Communications on Stochastic Analysis (COSA) is published in four issues annually (March, June, September, December). It aims to present original research papers of high quality in stochastic analysis (both theory and applications) and emphasizes the global development of the scientific community. The journal welcomes articles of interdisciplinary nature. Expository articles of current interest will occasionally be published. COSAis indexed in Mathematical Reviews (MathSciNet), Zentralblatt für Mathematik, and SCOPUS