{"title":"具有状态依赖跳跃的Wiener过程的破产问题","authors":"M. Lefebvre","doi":"10.2478/jamsi-2020-0002","DOIUrl":null,"url":null,"abstract":"Abstract Let X(t) be a jump-diffusion process whose continuous part is a Wiener process, and let T (x) be the first time it leaves the interval (0,b), where x = X(0). The jumps are negative and their sizes depend on the value of X(t). Moreover there can be a jump from X(t) to 0. We transform the integro-differential equation satisfied by the probability p(x) := P[X(T (x)) = 0] into an ordinary differential equation and we solve this equation explicitly in particular cases. We are also interested in the moment-generating function of T (x).","PeriodicalId":43016,"journal":{"name":"Journal of Applied Mathematics Statistics and Informatics","volume":"16 1","pages":"13 - 23"},"PeriodicalIF":0.3000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"The ruin problem for a Wiener process with state-dependent jumps\",\"authors\":\"M. Lefebvre\",\"doi\":\"10.2478/jamsi-2020-0002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Let X(t) be a jump-diffusion process whose continuous part is a Wiener process, and let T (x) be the first time it leaves the interval (0,b), where x = X(0). The jumps are negative and their sizes depend on the value of X(t). Moreover there can be a jump from X(t) to 0. We transform the integro-differential equation satisfied by the probability p(x) := P[X(T (x)) = 0] into an ordinary differential equation and we solve this equation explicitly in particular cases. We are also interested in the moment-generating function of T (x).\",\"PeriodicalId\":43016,\"journal\":{\"name\":\"Journal of Applied Mathematics Statistics and Informatics\",\"volume\":\"16 1\",\"pages\":\"13 - 23\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2020-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Mathematics Statistics and Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/jamsi-2020-0002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Mathematics Statistics and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/jamsi-2020-0002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
The ruin problem for a Wiener process with state-dependent jumps
Abstract Let X(t) be a jump-diffusion process whose continuous part is a Wiener process, and let T (x) be the first time it leaves the interval (0,b), where x = X(0). The jumps are negative and their sizes depend on the value of X(t). Moreover there can be a jump from X(t) to 0. We transform the integro-differential equation satisfied by the probability p(x) := P[X(T (x)) = 0] into an ordinary differential equation and we solve this equation explicitly in particular cases. We are also interested in the moment-generating function of T (x).