{"title":"植物的刺激能协调与最小认知","authors":"R. Sims, Özlem Yilmaz","doi":"10.1177/10597123221150817","DOIUrl":null,"url":null,"abstract":"The tricky question in the plant cognition debate is what theory of cognition should be used to fix the reference of cognitive concepts without skewing the debate too much one way or the other. After all, plants are rather different to animals in many respects: they are not motile, do not possess central nervous systems or even neurons, do not exhibit an invariant morphology, interact with the world in a distributed multi-centred manner, and behave through changes in their physiology. Nonetheless, there is a significant strand in the debate that asserts that plants are indeed cognitive. But what theory of cognition makes sense of this claim without baking in prior zoological assumptions? The aim of this paper is to try out a theory of minimal cognition that makes the claim of plant cognition plausible. It is primarily inspired by the distributed cognition literature and the sensorimotor coordination theory of cognition proposed by van Duijn et al. (2006). We take a cognitive system to be a coordinated set of semi-autonomous processes running over the organism and items in its environment. Coordination is characterised in terms of two functional conditions that ensure that the system generates goal-directed action in the world. The system is stigmergic in the sense that the material results of its actions in the environment are a crucial part of the processes that coordinate further actions. The account possesses a degree of scale invariance and helps unify cognitive explanation across microorganisms, plants and animals.","PeriodicalId":55552,"journal":{"name":"Adaptive Behavior","volume":"31 1","pages":"265 - 280"},"PeriodicalIF":1.2000,"publicationDate":"2023-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Stigmergic coordination and minimal cognition in plants\",\"authors\":\"R. Sims, Özlem Yilmaz\",\"doi\":\"10.1177/10597123221150817\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The tricky question in the plant cognition debate is what theory of cognition should be used to fix the reference of cognitive concepts without skewing the debate too much one way or the other. After all, plants are rather different to animals in many respects: they are not motile, do not possess central nervous systems or even neurons, do not exhibit an invariant morphology, interact with the world in a distributed multi-centred manner, and behave through changes in their physiology. Nonetheless, there is a significant strand in the debate that asserts that plants are indeed cognitive. But what theory of cognition makes sense of this claim without baking in prior zoological assumptions? The aim of this paper is to try out a theory of minimal cognition that makes the claim of plant cognition plausible. It is primarily inspired by the distributed cognition literature and the sensorimotor coordination theory of cognition proposed by van Duijn et al. (2006). We take a cognitive system to be a coordinated set of semi-autonomous processes running over the organism and items in its environment. Coordination is characterised in terms of two functional conditions that ensure that the system generates goal-directed action in the world. The system is stigmergic in the sense that the material results of its actions in the environment are a crucial part of the processes that coordinate further actions. The account possesses a degree of scale invariance and helps unify cognitive explanation across microorganisms, plants and animals.\",\"PeriodicalId\":55552,\"journal\":{\"name\":\"Adaptive Behavior\",\"volume\":\"31 1\",\"pages\":\"265 - 280\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Adaptive Behavior\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1177/10597123221150817\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Adaptive Behavior","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1177/10597123221150817","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Stigmergic coordination and minimal cognition in plants
The tricky question in the plant cognition debate is what theory of cognition should be used to fix the reference of cognitive concepts without skewing the debate too much one way or the other. After all, plants are rather different to animals in many respects: they are not motile, do not possess central nervous systems or even neurons, do not exhibit an invariant morphology, interact with the world in a distributed multi-centred manner, and behave through changes in their physiology. Nonetheless, there is a significant strand in the debate that asserts that plants are indeed cognitive. But what theory of cognition makes sense of this claim without baking in prior zoological assumptions? The aim of this paper is to try out a theory of minimal cognition that makes the claim of plant cognition plausible. It is primarily inspired by the distributed cognition literature and the sensorimotor coordination theory of cognition proposed by van Duijn et al. (2006). We take a cognitive system to be a coordinated set of semi-autonomous processes running over the organism and items in its environment. Coordination is characterised in terms of two functional conditions that ensure that the system generates goal-directed action in the world. The system is stigmergic in the sense that the material results of its actions in the environment are a crucial part of the processes that coordinate further actions. The account possesses a degree of scale invariance and helps unify cognitive explanation across microorganisms, plants and animals.
期刊介绍:
_Adaptive Behavior_ publishes articles on adaptive behaviour in living organisms and autonomous artificial systems. The official journal of the _International Society of Adaptive Behavior_, _Adaptive Behavior_, addresses topics such as perception and motor control, embodied cognition, learning and evolution, neural mechanisms, artificial intelligence, behavioral sequences, motivation and emotion, characterization of environments, decision making, collective and social behavior, navigation, foraging, communication and signalling.
Print ISSN: 1059-7123