线性波动方程中的混沌

Q1 Mathematics
Ned J. Corron
{"title":"线性波动方程中的混沌","authors":"Ned J. Corron","doi":"10.1016/j.csfx.2019.100014","DOIUrl":null,"url":null,"abstract":"<div><p>A linear partial differential equation is shown to exhibit three properties often used to define chaotic dynamics. The system comprises a one-dimensional wave equation with gain that operates on a semi-infinite line. A boundary condition enforces that the waves remain finite. It is shown that the resulting solution set is dense with periodic orbits, contains transitive orbits, and exhibits extreme sensitivity to initial conditions. Definitions of chaos are considered in light of such linear chaos.</p></div>","PeriodicalId":37147,"journal":{"name":"Chaos, Solitons and Fractals: X","volume":"2 ","pages":"Article 100014"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.csfx.2019.100014","citationCount":"2","resultStr":"{\"title\":\"Chaos in a linear wave equation\",\"authors\":\"Ned J. Corron\",\"doi\":\"10.1016/j.csfx.2019.100014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A linear partial differential equation is shown to exhibit three properties often used to define chaotic dynamics. The system comprises a one-dimensional wave equation with gain that operates on a semi-infinite line. A boundary condition enforces that the waves remain finite. It is shown that the resulting solution set is dense with periodic orbits, contains transitive orbits, and exhibits extreme sensitivity to initial conditions. Definitions of chaos are considered in light of such linear chaos.</p></div>\",\"PeriodicalId\":37147,\"journal\":{\"name\":\"Chaos, Solitons and Fractals: X\",\"volume\":\"2 \",\"pages\":\"Article 100014\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.csfx.2019.100014\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos, Solitons and Fractals: X\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590054419300120\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos, Solitons and Fractals: X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590054419300120","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 2

摘要

一个线性偏微分方程显示了三个通常用来定义混沌动力学的性质。该系统包括一个一维波动方程,其增益作用于半无限线上。边界条件迫使波保持有限。结果表明,所得到的解集具有密集的周期轨道,包含传递轨道,并对初始条件具有极高的敏感性。根据这种线性混沌来考虑混沌的定义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Chaos in a linear wave equation

A linear partial differential equation is shown to exhibit three properties often used to define chaotic dynamics. The system comprises a one-dimensional wave equation with gain that operates on a semi-infinite line. A boundary condition enforces that the waves remain finite. It is shown that the resulting solution set is dense with periodic orbits, contains transitive orbits, and exhibits extreme sensitivity to initial conditions. Definitions of chaos are considered in light of such linear chaos.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chaos, Solitons and Fractals: X
Chaos, Solitons and Fractals: X Mathematics-Mathematics (all)
CiteScore
5.00
自引率
0.00%
发文量
15
审稿时长
20 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信