Jiajie Mo, Zhenyu Liu, Kai Sun, Yanshan Ma, Wenhan Hu, Chao Zhang, Yao Wang, Xiu Wang, Chang Liu, Baotian Zhao, Kai Zhang, Jianguo Zhang, Jie Tian
{"title":"利用临床经验和放射组学特征自动检测海马硬化","authors":"Jiajie Mo, Zhenyu Liu, Kai Sun, Yanshan Ma, Wenhan Hu, Chao Zhang, Yao Wang, Xiu Wang, Chang Liu, Baotian Zhao, Kai Zhang, Jianguo Zhang, Jie Tian","doi":"10.1111/epi.16392","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Objective</h3>\n \n <p>Temporal lobe epilepsy is a common form of epilepsy that might be amenable to surgery. However, magnetic resonance imaging (MRI)-negative hippocampal sclerosis (HS) can hamper early diagnosis and surgical intervention for patients in clinical practice, resulting in disease progression. Our aim was to automatically detect and evaluate the structural alterations of HS.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>Eighty patients with pharmacoresistant epilepsy and histologically proven HS and 80 healthy controls were included in the study. Two automated classifiers relying on clinically empirical and radiomics features were developed to detect HS. Cross-validation was implemented on all participants, and specificity was assessed in the 80 controls. The performance, robustness, and clinical utility of the model were also evaluated. Structural analysis was performed to investigate the morphological abnormalities of HS.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>The computational model based on clinical empirical features showed excellent performance, with an area under the curve (AUC) of 0.981 in the primary cohort and 0.993 in the validation cohort. One of the features, gray-white matter boundary blurring in the temporal pole, exhibited the highest weight in model performance. Another model based on radiomics features also showed satisfactory performance, with AUC of 0.997 in the primary cohort and 0.978 in the validation cohort. In particular, the model improved the detection rate of MRI-negative HS to 96.0%. The novel feature of cortical folding complexity of the temporal pole not only played a crucial role in the classifier but also had significant correlation with disease duration.</p>\n </section>\n \n <section>\n \n <h3> Significance</h3>\n \n <p>Machine learning with quantitative clinical and radiomics features is shown to improve HS detection. HS-related structural alterations were similar in the MRI-positive and MRI-negative HS patient groups, indicating that misdiagnosis originates mainly from empirical interpretation. The cortical folding complexity of the temporal pole is a potentially valuable feature for exploring the nature of HS.</p>\n </section>\n </div>","PeriodicalId":11768,"journal":{"name":"Epilepsia","volume":null,"pages":null},"PeriodicalIF":6.6000,"publicationDate":"2019-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1111/epi.16392","citationCount":"40","resultStr":"{\"title\":\"Automated detection of hippocampal sclerosis using clinically empirical and radiomics features\",\"authors\":\"Jiajie Mo, Zhenyu Liu, Kai Sun, Yanshan Ma, Wenhan Hu, Chao Zhang, Yao Wang, Xiu Wang, Chang Liu, Baotian Zhao, Kai Zhang, Jianguo Zhang, Jie Tian\",\"doi\":\"10.1111/epi.16392\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <h3> Objective</h3>\\n \\n <p>Temporal lobe epilepsy is a common form of epilepsy that might be amenable to surgery. However, magnetic resonance imaging (MRI)-negative hippocampal sclerosis (HS) can hamper early diagnosis and surgical intervention for patients in clinical practice, resulting in disease progression. Our aim was to automatically detect and evaluate the structural alterations of HS.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Methods</h3>\\n \\n <p>Eighty patients with pharmacoresistant epilepsy and histologically proven HS and 80 healthy controls were included in the study. Two automated classifiers relying on clinically empirical and radiomics features were developed to detect HS. Cross-validation was implemented on all participants, and specificity was assessed in the 80 controls. The performance, robustness, and clinical utility of the model were also evaluated. Structural analysis was performed to investigate the morphological abnormalities of HS.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Results</h3>\\n \\n <p>The computational model based on clinical empirical features showed excellent performance, with an area under the curve (AUC) of 0.981 in the primary cohort and 0.993 in the validation cohort. One of the features, gray-white matter boundary blurring in the temporal pole, exhibited the highest weight in model performance. Another model based on radiomics features also showed satisfactory performance, with AUC of 0.997 in the primary cohort and 0.978 in the validation cohort. In particular, the model improved the detection rate of MRI-negative HS to 96.0%. The novel feature of cortical folding complexity of the temporal pole not only played a crucial role in the classifier but also had significant correlation with disease duration.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Significance</h3>\\n \\n <p>Machine learning with quantitative clinical and radiomics features is shown to improve HS detection. HS-related structural alterations were similar in the MRI-positive and MRI-negative HS patient groups, indicating that misdiagnosis originates mainly from empirical interpretation. The cortical folding complexity of the temporal pole is a potentially valuable feature for exploring the nature of HS.</p>\\n </section>\\n </div>\",\"PeriodicalId\":11768,\"journal\":{\"name\":\"Epilepsia\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2019-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1111/epi.16392\",\"citationCount\":\"40\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Epilepsia\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/epi.16392\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Epilepsia","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/epi.16392","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
Automated detection of hippocampal sclerosis using clinically empirical and radiomics features
Objective
Temporal lobe epilepsy is a common form of epilepsy that might be amenable to surgery. However, magnetic resonance imaging (MRI)-negative hippocampal sclerosis (HS) can hamper early diagnosis and surgical intervention for patients in clinical practice, resulting in disease progression. Our aim was to automatically detect and evaluate the structural alterations of HS.
Methods
Eighty patients with pharmacoresistant epilepsy and histologically proven HS and 80 healthy controls were included in the study. Two automated classifiers relying on clinically empirical and radiomics features were developed to detect HS. Cross-validation was implemented on all participants, and specificity was assessed in the 80 controls. The performance, robustness, and clinical utility of the model were also evaluated. Structural analysis was performed to investigate the morphological abnormalities of HS.
Results
The computational model based on clinical empirical features showed excellent performance, with an area under the curve (AUC) of 0.981 in the primary cohort and 0.993 in the validation cohort. One of the features, gray-white matter boundary blurring in the temporal pole, exhibited the highest weight in model performance. Another model based on radiomics features also showed satisfactory performance, with AUC of 0.997 in the primary cohort and 0.978 in the validation cohort. In particular, the model improved the detection rate of MRI-negative HS to 96.0%. The novel feature of cortical folding complexity of the temporal pole not only played a crucial role in the classifier but also had significant correlation with disease duration.
Significance
Machine learning with quantitative clinical and radiomics features is shown to improve HS detection. HS-related structural alterations were similar in the MRI-positive and MRI-negative HS patient groups, indicating that misdiagnosis originates mainly from empirical interpretation. The cortical folding complexity of the temporal pole is a potentially valuable feature for exploring the nature of HS.
期刊介绍:
Epilepsia is the leading, authoritative source for innovative clinical and basic science research for all aspects of epilepsy and seizures. In addition, Epilepsia publishes critical reviews, opinion pieces, and guidelines that foster understanding and aim to improve the diagnosis and treatment of people with seizures and epilepsy.