关于“不规则直角三角形分布的参数估计量”的注记

Q4 Mathematics
B. Lamond, Luckny Zéphyr
{"title":"关于“不规则直角三角形分布的参数估计量”的注记","authors":"B. Lamond, Luckny Zéphyr","doi":"10.3233/mas-210541","DOIUrl":null,"url":null,"abstract":"Simple estimators were given in (Kachiashvili & Topchishvili, 2016) for the lower and upper limits of an irregular right-angled triangular distribution together with convenient formulas for removing their bias. We argue here that the smallest observation is not a maximum likelihood estimator (MLE) of the lower limit and we present a procedure for computing an MLE of this parameter. We show that the MLE is strictly smaller than the smallest observation and we give some bounds that are useful in a numerical solution procedure. We also present simulation results to assess the bias and variance of the MLE.","PeriodicalId":35000,"journal":{"name":"Model Assisted Statistics and Applications","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Note on “Parameters estimators of irregular right-angled triangular distribution”\",\"authors\":\"B. Lamond, Luckny Zéphyr\",\"doi\":\"10.3233/mas-210541\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Simple estimators were given in (Kachiashvili & Topchishvili, 2016) for the lower and upper limits of an irregular right-angled triangular distribution together with convenient formulas for removing their bias. We argue here that the smallest observation is not a maximum likelihood estimator (MLE) of the lower limit and we present a procedure for computing an MLE of this parameter. We show that the MLE is strictly smaller than the smallest observation and we give some bounds that are useful in a numerical solution procedure. We also present simulation results to assess the bias and variance of the MLE.\",\"PeriodicalId\":35000,\"journal\":{\"name\":\"Model Assisted Statistics and Applications\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Model Assisted Statistics and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/mas-210541\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Model Assisted Statistics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/mas-210541","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1

摘要

在(Kachiashvili&Topchishvili,2016)中给出了不规则直角三角形分布的下限和上限的简单估计量,以及消除其偏差的方便公式。我们在这里认为,最小观测值不是下限的最大似然估计量(MLE),并且我们提出了计算该参数的MLE的过程。我们证明了MLE严格小于最小观测值,并给出了一些在数值求解过程中有用的边界。我们还提供了模拟结果来评估MLE的偏差和方差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Note on “Parameters estimators of irregular right-angled triangular distribution”
Simple estimators were given in (Kachiashvili & Topchishvili, 2016) for the lower and upper limits of an irregular right-angled triangular distribution together with convenient formulas for removing their bias. We argue here that the smallest observation is not a maximum likelihood estimator (MLE) of the lower limit and we present a procedure for computing an MLE of this parameter. We show that the MLE is strictly smaller than the smallest observation and we give some bounds that are useful in a numerical solution procedure. We also present simulation results to assess the bias and variance of the MLE.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Model Assisted Statistics and Applications
Model Assisted Statistics and Applications Mathematics-Applied Mathematics
CiteScore
1.00
自引率
0.00%
发文量
26
期刊介绍: Model Assisted Statistics and Applications is a peer reviewed international journal. Model Assisted Statistics means an improvement of inference and analysis by use of correlated information, or an underlying theoretical or design model. This might be the design, adjustment, estimation, or analytical phase of statistical project. This information may be survey generated or coming from an independent source. Original papers in the field of sampling theory, econometrics, time-series, design of experiments, and multivariate analysis will be preferred. Papers of both applied and theoretical topics are acceptable.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信