混合双胞胎的学习稳定降阶模型

IF 2.4 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Abel Sancarlos, Morgan Cameron, Jean-Marc Le Peuvedic, J. Groulier, J. Duval, E. Cueto, F. Chinesta
{"title":"混合双胞胎的学习稳定降阶模型","authors":"Abel Sancarlos, Morgan Cameron, Jean-Marc Le Peuvedic, J. Groulier, J. Duval, E. Cueto, F. Chinesta","doi":"10.1017/dce.2021.16","DOIUrl":null,"url":null,"abstract":"Abstract The concept of “hybrid twin” (HT) has recently received a growing interest thanks to the availability of powerful machine learning techniques. This twin concept combines physics-based models within a model order reduction framework—to obtain real-time feedback rates—and data science. Thus, the main idea of the HT is to develop on-the-fly data-driven models to correct possible deviations between measurements and physics-based model predictions. This paper is focused on the computation of stable, fast, and accurate corrections in the HT framework. Furthermore, regarding the delicate and important problem of stability, a new approach is proposed, introducing several subvariants and guaranteeing a low computational cost as well as the achievement of a stable time-integration.","PeriodicalId":34169,"journal":{"name":"DataCentric Engineering","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2021-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Learning stable reduced-order models for hybrid twins\",\"authors\":\"Abel Sancarlos, Morgan Cameron, Jean-Marc Le Peuvedic, J. Groulier, J. Duval, E. Cueto, F. Chinesta\",\"doi\":\"10.1017/dce.2021.16\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The concept of “hybrid twin” (HT) has recently received a growing interest thanks to the availability of powerful machine learning techniques. This twin concept combines physics-based models within a model order reduction framework—to obtain real-time feedback rates—and data science. Thus, the main idea of the HT is to develop on-the-fly data-driven models to correct possible deviations between measurements and physics-based model predictions. This paper is focused on the computation of stable, fast, and accurate corrections in the HT framework. Furthermore, regarding the delicate and important problem of stability, a new approach is proposed, introducing several subvariants and guaranteeing a low computational cost as well as the achievement of a stable time-integration.\",\"PeriodicalId\":34169,\"journal\":{\"name\":\"DataCentric Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2021-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"DataCentric Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/dce.2021.16\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"DataCentric Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/dce.2021.16","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 10

摘要

由于强大的机器学习技术的可用性,“混合双胞胎”(HT)的概念最近受到了越来越多的关注。这个孪生概念结合了模型降阶框架内的基于物理的模型(以获得实时反馈率)和数据科学。因此,高温观测的主要思想是开发实时数据驱动的模型,以纠正测量结果与基于物理的模型预测之间可能存在的偏差。本文的重点是在HT框架下计算稳定、快速和准确的校正。此外,针对复杂而重要的稳定性问题,提出了一种新方法,该方法引入了几个子变量,保证了较低的计算成本和稳定的时间积分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning stable reduced-order models for hybrid twins
Abstract The concept of “hybrid twin” (HT) has recently received a growing interest thanks to the availability of powerful machine learning techniques. This twin concept combines physics-based models within a model order reduction framework—to obtain real-time feedback rates—and data science. Thus, the main idea of the HT is to develop on-the-fly data-driven models to correct possible deviations between measurements and physics-based model predictions. This paper is focused on the computation of stable, fast, and accurate corrections in the HT framework. Furthermore, regarding the delicate and important problem of stability, a new approach is proposed, introducing several subvariants and guaranteeing a low computational cost as well as the achievement of a stable time-integration.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
DataCentric Engineering
DataCentric Engineering Engineering-General Engineering
CiteScore
5.60
自引率
0.00%
发文量
26
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信