{"title":"圆形拟合改进GNSS定位通过智能手机为工程目的","authors":"Allan Gomes, I. Klein, C. P. Krueger","doi":"10.1590/s1982-21702021000s00021","DOIUrl":null,"url":null,"abstract":"With access to the raw data collected by certain Android smartphones, it is possible to perform post-processing of the data. Thus, it is possible to employ certain satellite positioning methods that were previously restricted to geodetic receivers. Thanks to this and other innovations, such as the emergence of smartphones with modern GNSS sensors, a promising scenario is seen when employing these devices in engineering applications. Generally, in certain applications that require high accuracy, centimeter and millimeter order, geodetic receivers are used. However, these devices are expensive when compared to smartphones. In this research, the coordinates of a point were determined via a smartphone with a modern GNSS sensor, whose data were post-processed by the IBGE-PPP service, using the combination GPS+GLONASS and L1 frequency. Thus, using circle adjustment techniques based on least squares, it was possible to obtain horizontal accuracy of approximately 12 cm and 25 cm with a set of about 128-hour and 24-hour sessions respectively. The results obtained in this research suggest that the applied methodology can be used in certain applications in engineering, such as land surveying of rural properties.","PeriodicalId":55347,"journal":{"name":"Boletim De Ciencias Geodesicas","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2021-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CIRCLE FITTING FOR IMPROVED GNSS POSITIONING VIA SMARTPHONES FOR ENGINEERING PURPOSES\",\"authors\":\"Allan Gomes, I. Klein, C. P. Krueger\",\"doi\":\"10.1590/s1982-21702021000s00021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With access to the raw data collected by certain Android smartphones, it is possible to perform post-processing of the data. Thus, it is possible to employ certain satellite positioning methods that were previously restricted to geodetic receivers. Thanks to this and other innovations, such as the emergence of smartphones with modern GNSS sensors, a promising scenario is seen when employing these devices in engineering applications. Generally, in certain applications that require high accuracy, centimeter and millimeter order, geodetic receivers are used. However, these devices are expensive when compared to smartphones. In this research, the coordinates of a point were determined via a smartphone with a modern GNSS sensor, whose data were post-processed by the IBGE-PPP service, using the combination GPS+GLONASS and L1 frequency. Thus, using circle adjustment techniques based on least squares, it was possible to obtain horizontal accuracy of approximately 12 cm and 25 cm with a set of about 128-hour and 24-hour sessions respectively. The results obtained in this research suggest that the applied methodology can be used in certain applications in engineering, such as land surveying of rural properties.\",\"PeriodicalId\":55347,\"journal\":{\"name\":\"Boletim De Ciencias Geodesicas\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2021-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Boletim De Ciencias Geodesicas\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1590/s1982-21702021000s00021\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Earth and Planetary Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Boletim De Ciencias Geodesicas","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1590/s1982-21702021000s00021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
CIRCLE FITTING FOR IMPROVED GNSS POSITIONING VIA SMARTPHONES FOR ENGINEERING PURPOSES
With access to the raw data collected by certain Android smartphones, it is possible to perform post-processing of the data. Thus, it is possible to employ certain satellite positioning methods that were previously restricted to geodetic receivers. Thanks to this and other innovations, such as the emergence of smartphones with modern GNSS sensors, a promising scenario is seen when employing these devices in engineering applications. Generally, in certain applications that require high accuracy, centimeter and millimeter order, geodetic receivers are used. However, these devices are expensive when compared to smartphones. In this research, the coordinates of a point were determined via a smartphone with a modern GNSS sensor, whose data were post-processed by the IBGE-PPP service, using the combination GPS+GLONASS and L1 frequency. Thus, using circle adjustment techniques based on least squares, it was possible to obtain horizontal accuracy of approximately 12 cm and 25 cm with a set of about 128-hour and 24-hour sessions respectively. The results obtained in this research suggest that the applied methodology can be used in certain applications in engineering, such as land surveying of rural properties.
期刊介绍:
The Boletim de Ciências Geodésicas publishes original papers in the area of Geodetic Sciences and correlated ones (Geodesy, Photogrammetry and Remote Sensing, Cartography and Geographic Information Systems).
Submitted articles must be unpublished, and should not be under consideration for publication in any other journal. Previous publication of the paper in conference proceedings would not violate the originality requirements. Articles must be written preferably in English language.