Shmerkin-Wu定理的一个新的动态证明

Pub Date : 2020-09-02 DOI:10.3934/jmd.2022001
Tim Austin
{"title":"Shmerkin-Wu定理的一个新的动态证明","authors":"Tim Austin","doi":"10.3934/jmd.2022001","DOIUrl":null,"url":null,"abstract":"<p style='text-indent:20px;'>Let <inline-formula><tex-math id=\"M1\">\\begin{document}$ a < b $\\end{document}</tex-math></inline-formula> be multiplicatively independent integers, both at least <inline-formula><tex-math id=\"M2\">\\begin{document}$ 2 $\\end{document}</tex-math></inline-formula>. Let <inline-formula><tex-math id=\"M3\">\\begin{document}$ A,B $\\end{document}</tex-math></inline-formula> be closed subsets of <inline-formula><tex-math id=\"M4\">\\begin{document}$ [0,1] $\\end{document}</tex-math></inline-formula> that are forward invariant under multiplication by <inline-formula><tex-math id=\"M5\">\\begin{document}$ a $\\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id=\"M6\">\\begin{document}$ b $\\end{document}</tex-math></inline-formula> respectively, and let <inline-formula><tex-math id=\"M7\">\\begin{document}$ C : = A\\times B $\\end{document}</tex-math></inline-formula>. An old conjecture of Furstenberg asserted that any planar line <inline-formula><tex-math id=\"M8\">\\begin{document}$ L $\\end{document}</tex-math></inline-formula> not parallel to either axis must intersect <inline-formula><tex-math id=\"M9\">\\begin{document}$ C $\\end{document}</tex-math></inline-formula> in Hausdorff dimension at most <inline-formula><tex-math id=\"M10\">\\begin{document}$ \\max\\{\\dim C,1\\} - 1 $\\end{document}</tex-math></inline-formula>. Two recent works by Shmerkin and Wu have given two different proofs of this conjecture. This note provides a third proof. Like Wu's, it stays close to the ergodic theoretic machinery that Furstenberg introduced to study such questions, but it uses less substantial background from ergodic theory. The same method is also used to re-prove a recent result of Yu about certain sequences of sums.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"A new dynamical proof of the Shmerkin–Wu theorem\",\"authors\":\"Tim Austin\",\"doi\":\"10.3934/jmd.2022001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p style='text-indent:20px;'>Let <inline-formula><tex-math id=\\\"M1\\\">\\\\begin{document}$ a < b $\\\\end{document}</tex-math></inline-formula> be multiplicatively independent integers, both at least <inline-formula><tex-math id=\\\"M2\\\">\\\\begin{document}$ 2 $\\\\end{document}</tex-math></inline-formula>. Let <inline-formula><tex-math id=\\\"M3\\\">\\\\begin{document}$ A,B $\\\\end{document}</tex-math></inline-formula> be closed subsets of <inline-formula><tex-math id=\\\"M4\\\">\\\\begin{document}$ [0,1] $\\\\end{document}</tex-math></inline-formula> that are forward invariant under multiplication by <inline-formula><tex-math id=\\\"M5\\\">\\\\begin{document}$ a $\\\\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id=\\\"M6\\\">\\\\begin{document}$ b $\\\\end{document}</tex-math></inline-formula> respectively, and let <inline-formula><tex-math id=\\\"M7\\\">\\\\begin{document}$ C : = A\\\\times B $\\\\end{document}</tex-math></inline-formula>. An old conjecture of Furstenberg asserted that any planar line <inline-formula><tex-math id=\\\"M8\\\">\\\\begin{document}$ L $\\\\end{document}</tex-math></inline-formula> not parallel to either axis must intersect <inline-formula><tex-math id=\\\"M9\\\">\\\\begin{document}$ C $\\\\end{document}</tex-math></inline-formula> in Hausdorff dimension at most <inline-formula><tex-math id=\\\"M10\\\">\\\\begin{document}$ \\\\max\\\\{\\\\dim C,1\\\\} - 1 $\\\\end{document}</tex-math></inline-formula>. Two recent works by Shmerkin and Wu have given two different proofs of this conjecture. This note provides a third proof. Like Wu's, it stays close to the ergodic theoretic machinery that Furstenberg introduced to study such questions, but it uses less substantial background from ergodic theory. The same method is also used to re-prove a recent result of Yu about certain sequences of sums.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3934/jmd.2022001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/jmd.2022001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

让\boot{document}$a<b$\end{documents}是乘法独立的整数,两者都至少为\boot{document}$2$\end{document}。设\begin{document}$A、B$\end{document}是\begin{document}$[0,1]$\end{document}的闭子集,它们分别在与\begin}$A$\end}、\bbegin{document}$B$\end{document}相乘时是前向不变的,并且设\begin{document}$C:=A\times B$\end{document]。Furstenberg的一个古老猜想断言,任何不平行于任意一个轴的平面线\begin{document}$L$\end{documents}在Hausdorff维数中必须与\begin{document}$C$\end{document}相交,至多为\begin \document}$\max\{\dim C,1\}-1$\end}。Shmerkin和Wu最近的两部著作对这一猜想给出了两种不同的证明。这张纸条提供了第三个证明。和吴一样,它接近于Furstenberg为研究这些问题而引入的遍历理论机制,但使用了较少的遍历理论的实质背景。同样的方法也被用来重新证明余最近关于某些和序列的一个结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
A new dynamical proof of the Shmerkin–Wu theorem

Let \begin{document}$ a < b $\end{document} be multiplicatively independent integers, both at least \begin{document}$ 2 $\end{document}. Let \begin{document}$ A,B $\end{document} be closed subsets of \begin{document}$ [0,1] $\end{document} that are forward invariant under multiplication by \begin{document}$ a $\end{document}, \begin{document}$ b $\end{document} respectively, and let \begin{document}$ C : = A\times B $\end{document}. An old conjecture of Furstenberg asserted that any planar line \begin{document}$ L $\end{document} not parallel to either axis must intersect \begin{document}$ C $\end{document} in Hausdorff dimension at most \begin{document}$ \max\{\dim C,1\} - 1 $\end{document}. Two recent works by Shmerkin and Wu have given two different proofs of this conjecture. This note provides a third proof. Like Wu's, it stays close to the ergodic theoretic machinery that Furstenberg introduced to study such questions, but it uses less substantial background from ergodic theory. The same method is also used to re-prove a recent result of Yu about certain sequences of sums.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信