{"title":"Shmerkin-Wu定理的一个新的动态证明","authors":"Tim Austin","doi":"10.3934/jmd.2022001","DOIUrl":null,"url":null,"abstract":"<p style='text-indent:20px;'>Let <inline-formula><tex-math id=\"M1\">\\begin{document}$ a < b $\\end{document}</tex-math></inline-formula> be multiplicatively independent integers, both at least <inline-formula><tex-math id=\"M2\">\\begin{document}$ 2 $\\end{document}</tex-math></inline-formula>. Let <inline-formula><tex-math id=\"M3\">\\begin{document}$ A,B $\\end{document}</tex-math></inline-formula> be closed subsets of <inline-formula><tex-math id=\"M4\">\\begin{document}$ [0,1] $\\end{document}</tex-math></inline-formula> that are forward invariant under multiplication by <inline-formula><tex-math id=\"M5\">\\begin{document}$ a $\\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id=\"M6\">\\begin{document}$ b $\\end{document}</tex-math></inline-formula> respectively, and let <inline-formula><tex-math id=\"M7\">\\begin{document}$ C : = A\\times B $\\end{document}</tex-math></inline-formula>. An old conjecture of Furstenberg asserted that any planar line <inline-formula><tex-math id=\"M8\">\\begin{document}$ L $\\end{document}</tex-math></inline-formula> not parallel to either axis must intersect <inline-formula><tex-math id=\"M9\">\\begin{document}$ C $\\end{document}</tex-math></inline-formula> in Hausdorff dimension at most <inline-formula><tex-math id=\"M10\">\\begin{document}$ \\max\\{\\dim C,1\\} - 1 $\\end{document}</tex-math></inline-formula>. Two recent works by Shmerkin and Wu have given two different proofs of this conjecture. This note provides a third proof. Like Wu's, it stays close to the ergodic theoretic machinery that Furstenberg introduced to study such questions, but it uses less substantial background from ergodic theory. The same method is also used to re-prove a recent result of Yu about certain sequences of sums.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"A new dynamical proof of the Shmerkin–Wu theorem\",\"authors\":\"Tim Austin\",\"doi\":\"10.3934/jmd.2022001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p style='text-indent:20px;'>Let <inline-formula><tex-math id=\\\"M1\\\">\\\\begin{document}$ a < b $\\\\end{document}</tex-math></inline-formula> be multiplicatively independent integers, both at least <inline-formula><tex-math id=\\\"M2\\\">\\\\begin{document}$ 2 $\\\\end{document}</tex-math></inline-formula>. Let <inline-formula><tex-math id=\\\"M3\\\">\\\\begin{document}$ A,B $\\\\end{document}</tex-math></inline-formula> be closed subsets of <inline-formula><tex-math id=\\\"M4\\\">\\\\begin{document}$ [0,1] $\\\\end{document}</tex-math></inline-formula> that are forward invariant under multiplication by <inline-formula><tex-math id=\\\"M5\\\">\\\\begin{document}$ a $\\\\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id=\\\"M6\\\">\\\\begin{document}$ b $\\\\end{document}</tex-math></inline-formula> respectively, and let <inline-formula><tex-math id=\\\"M7\\\">\\\\begin{document}$ C : = A\\\\times B $\\\\end{document}</tex-math></inline-formula>. An old conjecture of Furstenberg asserted that any planar line <inline-formula><tex-math id=\\\"M8\\\">\\\\begin{document}$ L $\\\\end{document}</tex-math></inline-formula> not parallel to either axis must intersect <inline-formula><tex-math id=\\\"M9\\\">\\\\begin{document}$ C $\\\\end{document}</tex-math></inline-formula> in Hausdorff dimension at most <inline-formula><tex-math id=\\\"M10\\\">\\\\begin{document}$ \\\\max\\\\{\\\\dim C,1\\\\} - 1 $\\\\end{document}</tex-math></inline-formula>. Two recent works by Shmerkin and Wu have given two different proofs of this conjecture. This note provides a third proof. Like Wu's, it stays close to the ergodic theoretic machinery that Furstenberg introduced to study such questions, but it uses less substantial background from ergodic theory. The same method is also used to re-prove a recent result of Yu about certain sequences of sums.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3934/jmd.2022001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/jmd.2022001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Let \begin{document}$ a < b $\end{document} be multiplicatively independent integers, both at least \begin{document}$ 2 $\end{document}. Let \begin{document}$ A,B $\end{document} be closed subsets of \begin{document}$ [0,1] $\end{document} that are forward invariant under multiplication by \begin{document}$ a $\end{document}, \begin{document}$ b $\end{document} respectively, and let \begin{document}$ C : = A\times B $\end{document}. An old conjecture of Furstenberg asserted that any planar line \begin{document}$ L $\end{document} not parallel to either axis must intersect \begin{document}$ C $\end{document} in Hausdorff dimension at most \begin{document}$ \max\{\dim C,1\} - 1 $\end{document}. Two recent works by Shmerkin and Wu have given two different proofs of this conjecture. This note provides a third proof. Like Wu's, it stays close to the ergodic theoretic machinery that Furstenberg introduced to study such questions, but it uses less substantial background from ergodic theory. The same method is also used to re-prove a recent result of Yu about certain sequences of sums.