{"title":"双通道太阳能集热器中纳米流体对流流动的数值分析研究","authors":"K. Rakrak, A. Benahmed, S. Belabbes, T. Tayebi","doi":"10.1166/jon.2023.2008","DOIUrl":null,"url":null,"abstract":"This paper presents a numerical analysis study of the dynamic and thermal performance of a convective flow of water-copper nanofluids in a double-pass flat solar collector. The flow inside the confined space between the glazing and the insulation is governed by the continuity, momentum,\n and energy equations. The problem addressed is solved via a CFD ANSYS code using the finite volume method to discretize the equations of the mathematical model. The dynamic and thermal fields are obtained for different values of the volume fraction (φ = 0%, φ = 3%,\n and φ = 8%). These results are compared with other results mentioned in the literature. The results obtained allowed us to define the influence of these different parameters on the convective nanofluid flow in the solar collector. The increase in the volume fraction further promotes\n heat transfer. The presence of nanoparticles expects a critical part of the convective heat exchange.","PeriodicalId":47161,"journal":{"name":"Journal of Nanofluids","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical Analysis Study of a Convective Flow of Nanofluids in a Double-Pass Solar Collector\",\"authors\":\"K. Rakrak, A. Benahmed, S. Belabbes, T. Tayebi\",\"doi\":\"10.1166/jon.2023.2008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a numerical analysis study of the dynamic and thermal performance of a convective flow of water-copper nanofluids in a double-pass flat solar collector. The flow inside the confined space between the glazing and the insulation is governed by the continuity, momentum,\\n and energy equations. The problem addressed is solved via a CFD ANSYS code using the finite volume method to discretize the equations of the mathematical model. The dynamic and thermal fields are obtained for different values of the volume fraction (φ = 0%, φ = 3%,\\n and φ = 8%). These results are compared with other results mentioned in the literature. The results obtained allowed us to define the influence of these different parameters on the convective nanofluid flow in the solar collector. The increase in the volume fraction further promotes\\n heat transfer. The presence of nanoparticles expects a critical part of the convective heat exchange.\",\"PeriodicalId\":47161,\"journal\":{\"name\":\"Journal of Nanofluids\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nanofluids\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1166/jon.2023.2008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanofluids","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1166/jon.2023.2008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
Numerical Analysis Study of a Convective Flow of Nanofluids in a Double-Pass Solar Collector
This paper presents a numerical analysis study of the dynamic and thermal performance of a convective flow of water-copper nanofluids in a double-pass flat solar collector. The flow inside the confined space between the glazing and the insulation is governed by the continuity, momentum,
and energy equations. The problem addressed is solved via a CFD ANSYS code using the finite volume method to discretize the equations of the mathematical model. The dynamic and thermal fields are obtained for different values of the volume fraction (φ = 0%, φ = 3%,
and φ = 8%). These results are compared with other results mentioned in the literature. The results obtained allowed us to define the influence of these different parameters on the convective nanofluid flow in the solar collector. The increase in the volume fraction further promotes
heat transfer. The presence of nanoparticles expects a critical part of the convective heat exchange.
期刊介绍:
Journal of Nanofluids (JON) is an international multidisciplinary peer-reviewed journal covering a wide range of research topics in the field of nanofluids and fluid science. It is an ideal and unique reference source for scientists and engineers working in this important and emerging research field of science, engineering and technology. The journal publishes full research papers, review articles with author''s photo and short biography, and communications of important new findings encompassing the fundamental and applied research in all aspects of science and engineering of nanofluids and fluid science related developing technologies.