{"title":"不同比例增强纤维天然粘弹性复合材料动态性能的测定","authors":"S. Shlykov, R. Rogulin, S. Kondrashev","doi":"10.1515/cls-2022-0011","DOIUrl":null,"url":null,"abstract":"Abstract Viscoelastic composites are strong and handle vibration damping quite well, which allows them to be used in a wide variety of applications. Thus, there is a need to determine the optimal amount of fiber to ensure high mechanical and dynamic performance with as little interference as possible. The purpose of this work is to find the most appropriate percentage of organic fiber – cellulose derived from corn stalks in a polylactic acid matrix, studying the changes in damping characteristics, tensile strength, bend-test. As parameters for comparison, the coefficient of bending and breaking strength, modules of accumulation and losses, factor C were chosen. It was found that strength indicators decrease with fiber fraction growth. While the damping factor at the glass transition temperature increases. In order to confirm the results obtained, the calculation of the C factor was used. The study investigates the damping factor’s dependence on the mechanical properties. It is shown that there is a correlation between moduli and bending strength with increasing fiber fraction. The scientific novelty of this work is the study of natural viscoelastic composites with different proportions of reinforcing fibers based on mechanical and dynamic characteristics in order to create and apply biodegradable viscoelastic composites in various fields.","PeriodicalId":44435,"journal":{"name":"Curved and Layered Structures","volume":"9 1","pages":"116 - 123"},"PeriodicalIF":1.1000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Determination of the dynamic performance of natural viscoelastic composites with different proportions of reinforcing fibers\",\"authors\":\"S. Shlykov, R. Rogulin, S. Kondrashev\",\"doi\":\"10.1515/cls-2022-0011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Viscoelastic composites are strong and handle vibration damping quite well, which allows them to be used in a wide variety of applications. Thus, there is a need to determine the optimal amount of fiber to ensure high mechanical and dynamic performance with as little interference as possible. The purpose of this work is to find the most appropriate percentage of organic fiber – cellulose derived from corn stalks in a polylactic acid matrix, studying the changes in damping characteristics, tensile strength, bend-test. As parameters for comparison, the coefficient of bending and breaking strength, modules of accumulation and losses, factor C were chosen. It was found that strength indicators decrease with fiber fraction growth. While the damping factor at the glass transition temperature increases. In order to confirm the results obtained, the calculation of the C factor was used. The study investigates the damping factor’s dependence on the mechanical properties. It is shown that there is a correlation between moduli and bending strength with increasing fiber fraction. The scientific novelty of this work is the study of natural viscoelastic composites with different proportions of reinforcing fibers based on mechanical and dynamic characteristics in order to create and apply biodegradable viscoelastic composites in various fields.\",\"PeriodicalId\":44435,\"journal\":{\"name\":\"Curved and Layered Structures\",\"volume\":\"9 1\",\"pages\":\"116 - 123\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Curved and Layered Structures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/cls-2022-0011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Curved and Layered Structures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/cls-2022-0011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
Determination of the dynamic performance of natural viscoelastic composites with different proportions of reinforcing fibers
Abstract Viscoelastic composites are strong and handle vibration damping quite well, which allows them to be used in a wide variety of applications. Thus, there is a need to determine the optimal amount of fiber to ensure high mechanical and dynamic performance with as little interference as possible. The purpose of this work is to find the most appropriate percentage of organic fiber – cellulose derived from corn stalks in a polylactic acid matrix, studying the changes in damping characteristics, tensile strength, bend-test. As parameters for comparison, the coefficient of bending and breaking strength, modules of accumulation and losses, factor C were chosen. It was found that strength indicators decrease with fiber fraction growth. While the damping factor at the glass transition temperature increases. In order to confirm the results obtained, the calculation of the C factor was used. The study investigates the damping factor’s dependence on the mechanical properties. It is shown that there is a correlation between moduli and bending strength with increasing fiber fraction. The scientific novelty of this work is the study of natural viscoelastic composites with different proportions of reinforcing fibers based on mechanical and dynamic characteristics in order to create and apply biodegradable viscoelastic composites in various fields.
期刊介绍:
The aim of Curved and Layered Structures is to become a premier source of knowledge and a worldwide-recognized platform of research and knowledge exchange for scientists of different disciplinary origins and backgrounds (e.g., civil, mechanical, marine, aerospace engineers and architects). The journal publishes research papers from a broad range of topics and approaches including structural mechanics, computational mechanics, engineering structures, architectural design, wind engineering, aerospace engineering, naval engineering, structural stability, structural dynamics, structural stability/reliability, experimental modeling and smart structures. Therefore, the Journal accepts both theoretical and applied contributions in all subfields of structural mechanics as long as they contribute in a broad sense to the core theme.