解释机器学习模型的客观标准

Applied AI letters Pub Date : 2021-11-23 DOI:10.1002/ail2.57
Chih-Kuan Yeh, Pradeep Ravikumar
{"title":"解释机器学习模型的客观标准","authors":"Chih-Kuan Yeh,&nbsp;Pradeep Ravikumar","doi":"10.1002/ail2.57","DOIUrl":null,"url":null,"abstract":"<p>Objective criteria to evaluate the performance of machine learning (ML) model explanations are a critical ingredient in bringing greater rigor to the field of explainable artificial intelligence. In this article, we survey three of our proposed criteria that each target different classes of explanations. In the first, targeted at real-valued feature importance explanations, we define a class of “infidelity” measures that capture how well the explanations match the ML models. We show that instances of such infidelity minimizing explanations correspond to many popular recently proposed explanations and, moreover, can be shown to satisfy well-known game-theoretic axiomatic properties. In the second, targeted to feature set explanations, we define a robustness analysis-based criterion and show that deriving explainable feature sets based on the robustness criterion yields more qualitatively impressive explanations. Lastly, for sample explanations, we provide a decomposition-based criterion that allows us to provide very scalable and compelling classes of sample-based explanations.</p>","PeriodicalId":72253,"journal":{"name":"Applied AI letters","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ail2.57","citationCount":"3","resultStr":"{\"title\":\"Objective criteria for explanations of machine learning models\",\"authors\":\"Chih-Kuan Yeh,&nbsp;Pradeep Ravikumar\",\"doi\":\"10.1002/ail2.57\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Objective criteria to evaluate the performance of machine learning (ML) model explanations are a critical ingredient in bringing greater rigor to the field of explainable artificial intelligence. In this article, we survey three of our proposed criteria that each target different classes of explanations. In the first, targeted at real-valued feature importance explanations, we define a class of “infidelity” measures that capture how well the explanations match the ML models. We show that instances of such infidelity minimizing explanations correspond to many popular recently proposed explanations and, moreover, can be shown to satisfy well-known game-theoretic axiomatic properties. In the second, targeted to feature set explanations, we define a robustness analysis-based criterion and show that deriving explainable feature sets based on the robustness criterion yields more qualitatively impressive explanations. Lastly, for sample explanations, we provide a decomposition-based criterion that allows us to provide very scalable and compelling classes of sample-based explanations.</p>\",\"PeriodicalId\":72253,\"journal\":{\"name\":\"Applied AI letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ail2.57\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied AI letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ail2.57\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied AI letters","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ail2.57","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

评估机器学习(ML)模型解释性能的客观标准是提高可解释人工智能领域的严谨性的关键因素。在本文中,我们调查了我们提出的三个标准,每个标准针对不同类别的解释。首先,针对实值特征重要性解释,我们定义了一类“不忠”度量,以捕获解释与ML模型的匹配程度。我们证明了这种不忠最小化解释的实例与最近提出的许多流行解释相对应,而且可以证明满足众所周知的博弈论公理性质。在第二部分中,针对特征集解释,我们定义了一个基于鲁棒性分析的标准,并表明基于鲁棒性标准推导可解释的特征集产生了更多的定性令人印象深刻的解释。最后,对于样本解释,我们提供了一个基于分解的标准,它允许我们提供非常可扩展和引人注目的基于样本的解释类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Objective criteria for explanations of machine learning models

Objective criteria for explanations of machine learning models

Objective criteria to evaluate the performance of machine learning (ML) model explanations are a critical ingredient in bringing greater rigor to the field of explainable artificial intelligence. In this article, we survey three of our proposed criteria that each target different classes of explanations. In the first, targeted at real-valued feature importance explanations, we define a class of “infidelity” measures that capture how well the explanations match the ML models. We show that instances of such infidelity minimizing explanations correspond to many popular recently proposed explanations and, moreover, can be shown to satisfy well-known game-theoretic axiomatic properties. In the second, targeted to feature set explanations, we define a robustness analysis-based criterion and show that deriving explainable feature sets based on the robustness criterion yields more qualitatively impressive explanations. Lastly, for sample explanations, we provide a decomposition-based criterion that allows us to provide very scalable and compelling classes of sample-based explanations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信