使用双曲线加权移动平均线的简单多变量条件协方差动力学

Q3 Mathematics
H. Kawakatsu
{"title":"使用双曲线加权移动平均线的简单多变量条件协方差动力学","authors":"H. Kawakatsu","doi":"10.1515/jem-2020-0004","DOIUrl":null,"url":null,"abstract":"Abstract This paper considers a class of multivariate ARCH models with scalar weights. A new specification with hyperbolic weighted moving average (HWMA) is proposed as an analogue of the EWMA model. Despite the restrictive dynamics of a scalar weight model, the proposed model has a number of advantages that can deal with the curse of dimensionality. The empirical application illustrates that the (pseudo) out-of-sample multistep forecasts can be surprisingly more accurate than those from the DCC model.","PeriodicalId":36727,"journal":{"name":"Journal of Econometric Methods","volume":"10 1","pages":"33 - 52"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/jem-2020-0004","citationCount":"0","resultStr":"{\"title\":\"Simple Multivariate Conditional Covariance Dynamics Using Hyperbolically Weighted Moving Averages\",\"authors\":\"H. Kawakatsu\",\"doi\":\"10.1515/jem-2020-0004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This paper considers a class of multivariate ARCH models with scalar weights. A new specification with hyperbolic weighted moving average (HWMA) is proposed as an analogue of the EWMA model. Despite the restrictive dynamics of a scalar weight model, the proposed model has a number of advantages that can deal with the curse of dimensionality. The empirical application illustrates that the (pseudo) out-of-sample multistep forecasts can be surprisingly more accurate than those from the DCC model.\",\"PeriodicalId\":36727,\"journal\":{\"name\":\"Journal of Econometric Methods\",\"volume\":\"10 1\",\"pages\":\"33 - 52\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/jem-2020-0004\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Econometric Methods\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/jem-2020-0004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Econometric Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jem-2020-0004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

摘要本文考虑了一类具有标量权值的多元ARCH模型。提出了一种新的双曲加权移动平均(HWMA)规范来模拟EWMA模型。尽管标量权重模型存在动力学上的限制,但该模型在处理维数问题方面具有许多优点。经验应用表明,(伪)样本外多步预测可以比DCC模型更准确。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Simple Multivariate Conditional Covariance Dynamics Using Hyperbolically Weighted Moving Averages
Abstract This paper considers a class of multivariate ARCH models with scalar weights. A new specification with hyperbolic weighted moving average (HWMA) is proposed as an analogue of the EWMA model. Despite the restrictive dynamics of a scalar weight model, the proposed model has a number of advantages that can deal with the curse of dimensionality. The empirical application illustrates that the (pseudo) out-of-sample multistep forecasts can be surprisingly more accurate than those from the DCC model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Econometric Methods
Journal of Econometric Methods Economics, Econometrics and Finance-Economics and Econometrics
CiteScore
2.20
自引率
0.00%
发文量
7
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信