智能耳识别技术

Q3 Computer Science
Yahya Hussein, Ali Mohammed Sahan
{"title":"智能耳识别技术","authors":"Yahya Hussein, Ali Mohammed Sahan","doi":"10.15849/ijasca.211128.02","DOIUrl":null,"url":null,"abstract":"The human ear has unique and attractive details; therefore, human ear recognition is one of the most important fields in the biometric domains. In this work, we proposed an efficient and intelligent ear recognition technique based on particle swarm optimization, discrete wavelet transform, and fuzzy neural network. Discrete wavelet transform is used to provide comprise and effective features about the ear image, while the particle swarm optimization utilized to select more effective and attractive features. Furthermore, using particle swarm optimization leads to reduce the complexity of the classification stage since it reduces the number of the features. Fuzzy neural network used in the classification stage in order to provide strong distinguishing between the testing and training ear images. many experiments performed using two ear databases to examine the accuracy of the proposed technique. The analysis of the results refers that the presented technique gained high recognition accuracy using various data sets with less complexity. Keywords: Ear recognition; bio-metric; discrete wavelet transform, particle swarm optimization, fuzzy neural network.","PeriodicalId":38638,"journal":{"name":"International Journal of Advances in Soft Computing and its Applications","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An Intelligent Ear Recognition Technique\",\"authors\":\"Yahya Hussein, Ali Mohammed Sahan\",\"doi\":\"10.15849/ijasca.211128.02\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The human ear has unique and attractive details; therefore, human ear recognition is one of the most important fields in the biometric domains. In this work, we proposed an efficient and intelligent ear recognition technique based on particle swarm optimization, discrete wavelet transform, and fuzzy neural network. Discrete wavelet transform is used to provide comprise and effective features about the ear image, while the particle swarm optimization utilized to select more effective and attractive features. Furthermore, using particle swarm optimization leads to reduce the complexity of the classification stage since it reduces the number of the features. Fuzzy neural network used in the classification stage in order to provide strong distinguishing between the testing and training ear images. many experiments performed using two ear databases to examine the accuracy of the proposed technique. The analysis of the results refers that the presented technique gained high recognition accuracy using various data sets with less complexity. Keywords: Ear recognition; bio-metric; discrete wavelet transform, particle swarm optimization, fuzzy neural network.\",\"PeriodicalId\":38638,\"journal\":{\"name\":\"International Journal of Advances in Soft Computing and its Applications\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Advances in Soft Computing and its Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15849/ijasca.211128.02\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advances in Soft Computing and its Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15849/ijasca.211128.02","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 1

摘要

人的耳朵有独特而吸引人的细节;因此,人耳识别是生物识别领域的重要研究方向之一。本文提出了一种基于粒子群优化、离散小波变换和模糊神经网络的高效智能耳识别技术。利用离散小波变换提供耳图像的包含和有效特征,利用粒子群算法选择更有效和吸引人的特征。此外,使用粒子群优化可以减少特征的数量,从而降低分类阶段的复杂性。在分类阶段使用模糊神经网络,以提供测试和训练耳图像之间的强区分。使用两个耳朵数据库进行了许多实验,以检验所提出技术的准确性。结果分析表明,该方法在不同的数据集上,以较低的复杂度获得了较高的识别精度。关键词:人耳识别;bio-metric;离散小波变换,粒子群优化,模糊神经网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Intelligent Ear Recognition Technique
The human ear has unique and attractive details; therefore, human ear recognition is one of the most important fields in the biometric domains. In this work, we proposed an efficient and intelligent ear recognition technique based on particle swarm optimization, discrete wavelet transform, and fuzzy neural network. Discrete wavelet transform is used to provide comprise and effective features about the ear image, while the particle swarm optimization utilized to select more effective and attractive features. Furthermore, using particle swarm optimization leads to reduce the complexity of the classification stage since it reduces the number of the features. Fuzzy neural network used in the classification stage in order to provide strong distinguishing between the testing and training ear images. many experiments performed using two ear databases to examine the accuracy of the proposed technique. The analysis of the results refers that the presented technique gained high recognition accuracy using various data sets with less complexity. Keywords: Ear recognition; bio-metric; discrete wavelet transform, particle swarm optimization, fuzzy neural network.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Advances in Soft Computing and its Applications
International Journal of Advances in Soft Computing and its Applications Computer Science-Computer Science Applications
CiteScore
3.30
自引率
0.00%
发文量
31
期刊介绍: The aim of this journal is to provide a lively forum for the communication of original research papers and timely review articles on Advances in Soft Computing and Its Applications. IJASCA will publish only articles of the highest quality. Submissions will be evaluated on their originality and significance. IJASCA invites submissions in all areas of Soft Computing and Its Applications. The scope of the journal includes, but is not limited to: √ Soft Computing Fundamental and Optimization √ Soft Computing for Big Data Era √ GPU Computing for Machine Learning √ Soft Computing Modeling for Perception and Spiritual Intelligence √ Soft Computing and Agents Technology √ Soft Computing in Computer Graphics √ Soft Computing and Pattern Recognition √ Soft Computing in Biomimetic Pattern Recognition √ Data mining for Social Network Data √ Spatial Data Mining & Information Retrieval √ Intelligent Software Agent Systems and Architectures √ Advanced Soft Computing and Multi-Objective Evolutionary Computation √ Perception-Based Intelligent Decision Systems √ Spiritual-Based Intelligent Systems √ Soft Computing in Industry ApplicationsOther issues related to the Advances of Soft Computing in various applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信