{"title":"最小协终扩展的多样性","authors":"J. Schmerl","doi":"10.1215/00294527-2022-0028","DOIUrl":null,"url":null,"abstract":"Fix a countable nonstandard model M of Peano Arithmetic. Even with some rather severe restrictions placed on the types of minimal cofinal extensions N ≻ M that are allowed, we still find that there are 20 possible theories of (N ,M) for such N ’s. The script letters M,N ,K (possibly adorned) always denote models of Peano Arithmetic (PA) having domains M,N,K, respectively. The set of parametrically definable subsets of M is Def(M). If J ⊆ M , then Cod(M/J) = {A ∩ J : A ∈ Def(M)}. A cut of M is a subset J ⊆ M such that 0 ∈ J 6= M and if a ≤ b ∈ J , then a + 1 ∈ J . The cut J is exponentially closed if 2 ∈ J whenever a ∈ J . Suppose that M ≺ N . Their Greatest Common Initial Segment is GCIS(M,N ) = {b ∈ M : whenever N |= a ≤ b, then a ∈ M}, which is M if N is an end extension of M and is a cut otherwise. If J is a cut of M, then N fills J if there is b ∈ N such that whenever a ∈ J and c ∈ M\\J , then N |= a < b < c. The interstructure lattice is Lt(N /M) = {K : M 4 K 4 N}, ordered by elementary extension. If 1 ≤ n < ω, then n is the lattice that is a chain of n elements. One of the themes of [4] is the diversity of cofinal extensions, exemplified by the following theorem. Theorem A: ([4, Theorem 7.1]) If J is an exponentially closed cut of countable M, then there is a set C of cofinal elementary extensions of M such that: (1) |C| = 20 ; (2) if N ∈ C, then GCIS(M,N ) = J , Cod(N /J) = Cod(M/J) and N does not fill J ; (3) if N1,N2 ∈ C are distinct, then Th(N1,M) 6= Th(N2,M); (4) Lt(N /M) ∼= 3 for each N ∈ C. ([4, page 285]) It was left open, and specifically asked ([4, Question 7.5]), whether the 3 in (4) can be replaced by 2 (so that every N ∈ C is a minimal Date: September 17, 2021.","PeriodicalId":51259,"journal":{"name":"Notre Dame Journal of Formal Logic","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2021-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Diversity of Minimal Cofinal Extensions\",\"authors\":\"J. Schmerl\",\"doi\":\"10.1215/00294527-2022-0028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fix a countable nonstandard model M of Peano Arithmetic. Even with some rather severe restrictions placed on the types of minimal cofinal extensions N ≻ M that are allowed, we still find that there are 20 possible theories of (N ,M) for such N ’s. The script letters M,N ,K (possibly adorned) always denote models of Peano Arithmetic (PA) having domains M,N,K, respectively. The set of parametrically definable subsets of M is Def(M). If J ⊆ M , then Cod(M/J) = {A ∩ J : A ∈ Def(M)}. A cut of M is a subset J ⊆ M such that 0 ∈ J 6= M and if a ≤ b ∈ J , then a + 1 ∈ J . The cut J is exponentially closed if 2 ∈ J whenever a ∈ J . Suppose that M ≺ N . Their Greatest Common Initial Segment is GCIS(M,N ) = {b ∈ M : whenever N |= a ≤ b, then a ∈ M}, which is M if N is an end extension of M and is a cut otherwise. If J is a cut of M, then N fills J if there is b ∈ N such that whenever a ∈ J and c ∈ M\\\\J , then N |= a < b < c. The interstructure lattice is Lt(N /M) = {K : M 4 K 4 N}, ordered by elementary extension. If 1 ≤ n < ω, then n is the lattice that is a chain of n elements. One of the themes of [4] is the diversity of cofinal extensions, exemplified by the following theorem. Theorem A: ([4, Theorem 7.1]) If J is an exponentially closed cut of countable M, then there is a set C of cofinal elementary extensions of M such that: (1) |C| = 20 ; (2) if N ∈ C, then GCIS(M,N ) = J , Cod(N /J) = Cod(M/J) and N does not fill J ; (3) if N1,N2 ∈ C are distinct, then Th(N1,M) 6= Th(N2,M); (4) Lt(N /M) ∼= 3 for each N ∈ C. ([4, page 285]) It was left open, and specifically asked ([4, Question 7.5]), whether the 3 in (4) can be replaced by 2 (so that every N ∈ C is a minimal Date: September 17, 2021.\",\"PeriodicalId\":51259,\"journal\":{\"name\":\"Notre Dame Journal of Formal Logic\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2021-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Notre Dame Journal of Formal Logic\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1215/00294527-2022-0028\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"LOGIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Notre Dame Journal of Formal Logic","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1215/00294527-2022-0028","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"LOGIC","Score":null,"Total":0}
Fix a countable nonstandard model M of Peano Arithmetic. Even with some rather severe restrictions placed on the types of minimal cofinal extensions N ≻ M that are allowed, we still find that there are 20 possible theories of (N ,M) for such N ’s. The script letters M,N ,K (possibly adorned) always denote models of Peano Arithmetic (PA) having domains M,N,K, respectively. The set of parametrically definable subsets of M is Def(M). If J ⊆ M , then Cod(M/J) = {A ∩ J : A ∈ Def(M)}. A cut of M is a subset J ⊆ M such that 0 ∈ J 6= M and if a ≤ b ∈ J , then a + 1 ∈ J . The cut J is exponentially closed if 2 ∈ J whenever a ∈ J . Suppose that M ≺ N . Their Greatest Common Initial Segment is GCIS(M,N ) = {b ∈ M : whenever N |= a ≤ b, then a ∈ M}, which is M if N is an end extension of M and is a cut otherwise. If J is a cut of M, then N fills J if there is b ∈ N such that whenever a ∈ J and c ∈ M\J , then N |= a < b < c. The interstructure lattice is Lt(N /M) = {K : M 4 K 4 N}, ordered by elementary extension. If 1 ≤ n < ω, then n is the lattice that is a chain of n elements. One of the themes of [4] is the diversity of cofinal extensions, exemplified by the following theorem. Theorem A: ([4, Theorem 7.1]) If J is an exponentially closed cut of countable M, then there is a set C of cofinal elementary extensions of M such that: (1) |C| = 20 ; (2) if N ∈ C, then GCIS(M,N ) = J , Cod(N /J) = Cod(M/J) and N does not fill J ; (3) if N1,N2 ∈ C are distinct, then Th(N1,M) 6= Th(N2,M); (4) Lt(N /M) ∼= 3 for each N ∈ C. ([4, page 285]) It was left open, and specifically asked ([4, Question 7.5]), whether the 3 in (4) can be replaced by 2 (so that every N ∈ C is a minimal Date: September 17, 2021.
期刊介绍:
The Notre Dame Journal of Formal Logic, founded in 1960, aims to publish high quality and original research papers in philosophical logic, mathematical logic, and related areas, including papers of compelling historical interest. The Journal is also willing to selectively publish expository articles on important current topics of interest as well as book reviews.