Wan-Shu Cheng, Pengchi Huang, Jheng-Yu Huang, Ju-Chin Chen, K. W. Lin
{"title":"一种快速分布式的城市大数据C4.5算法","authors":"Wan-Shu Cheng, Pengchi Huang, Jheng-Yu Huang, Ju-Chin Chen, K. W. Lin","doi":"10.3233/ida-220753","DOIUrl":null,"url":null,"abstract":"The amount of information nowadays is rapidly growing. Aside from valuable information, information that is unrelated to a target or is meaningless is also growing. Big data and broader digital technologies are considered the primary components of smart city governance and planning. Big data analysis is considered to define a new era in urban planning, research, and policy. Effective data mining and pattern detection techniques are becoming very important these days. Processing such a large amount of data entails the use of data mining, a technique that clarifies the association between valid information and excludes irrelevant data to implement a practical decision tree. A large amount of data affects processing time and I/O costs during data mining. This study proposes to distribute data among multiple clients and distribute a large amount of data computation equally to improve the resource cost problem of exploration. Following that, the main server consolidates the computation results and generates the survey results. Experiment results show that the proposed algorithm is superior, thus allowing a larger amount of data to be processed while producing high-quality results.","PeriodicalId":50355,"journal":{"name":"Intelligent Data Analysis","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A fast and distributed C4.5 algorithm for urban big data\",\"authors\":\"Wan-Shu Cheng, Pengchi Huang, Jheng-Yu Huang, Ju-Chin Chen, K. W. Lin\",\"doi\":\"10.3233/ida-220753\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The amount of information nowadays is rapidly growing. Aside from valuable information, information that is unrelated to a target or is meaningless is also growing. Big data and broader digital technologies are considered the primary components of smart city governance and planning. Big data analysis is considered to define a new era in urban planning, research, and policy. Effective data mining and pattern detection techniques are becoming very important these days. Processing such a large amount of data entails the use of data mining, a technique that clarifies the association between valid information and excludes irrelevant data to implement a practical decision tree. A large amount of data affects processing time and I/O costs during data mining. This study proposes to distribute data among multiple clients and distribute a large amount of data computation equally to improve the resource cost problem of exploration. Following that, the main server consolidates the computation results and generates the survey results. Experiment results show that the proposed algorithm is superior, thus allowing a larger amount of data to be processed while producing high-quality results.\",\"PeriodicalId\":50355,\"journal\":{\"name\":\"Intelligent Data Analysis\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Intelligent Data Analysis\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.3233/ida-220753\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligent Data Analysis","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3233/ida-220753","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
A fast and distributed C4.5 algorithm for urban big data
The amount of information nowadays is rapidly growing. Aside from valuable information, information that is unrelated to a target or is meaningless is also growing. Big data and broader digital technologies are considered the primary components of smart city governance and planning. Big data analysis is considered to define a new era in urban planning, research, and policy. Effective data mining and pattern detection techniques are becoming very important these days. Processing such a large amount of data entails the use of data mining, a technique that clarifies the association between valid information and excludes irrelevant data to implement a practical decision tree. A large amount of data affects processing time and I/O costs during data mining. This study proposes to distribute data among multiple clients and distribute a large amount of data computation equally to improve the resource cost problem of exploration. Following that, the main server consolidates the computation results and generates the survey results. Experiment results show that the proposed algorithm is superior, thus allowing a larger amount of data to be processed while producing high-quality results.
期刊介绍:
Intelligent Data Analysis provides a forum for the examination of issues related to the research and applications of Artificial Intelligence techniques in data analysis across a variety of disciplines. These techniques include (but are not limited to): all areas of data visualization, data pre-processing (fusion, editing, transformation, filtering, sampling), data engineering, database mining techniques, tools and applications, use of domain knowledge in data analysis, big data applications, evolutionary algorithms, machine learning, neural nets, fuzzy logic, statistical pattern recognition, knowledge filtering, and post-processing. In particular, papers are preferred that discuss development of new AI related data analysis architectures, methodologies, and techniques and their applications to various domains.