几何有界流形上的归一化Yamabe流

Pub Date : 2023-04-19 DOI:10.1007/s10455-023-09902-3
Bruno Caldeira, Luiz Hartmann, Boris Vertman
{"title":"几何有界流形上的归一化Yamabe流","authors":"Bruno Caldeira,&nbsp;Luiz Hartmann,&nbsp;Boris Vertman","doi":"10.1007/s10455-023-09902-3","DOIUrl":null,"url":null,"abstract":"<div><p>The goal of this paper is to study Yamabe flow on a complete Riemannian manifold of bounded geometry with possibly infinite volume. In case of infinite volume, standard volume normalization of the Yamabe flow fails and the flow may not converge. Instead, we consider a curvature normalized Yamabe flow, and assuming negative scalar curvature, prove its long-time existence and convergence. This extends the results of Suárez-Serrato and Tapie to a non-compact setting. In the appendix we specify our analysis to a particular example of manifolds with bounded geometry, namely manifolds with fibered boundary metric. In this case we obtain stronger estimates for the short time solution using microlocal methods.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10455-023-09902-3.pdf","citationCount":"2","resultStr":"{\"title\":\"Normalized Yamabe flow on manifolds with bounded geometry\",\"authors\":\"Bruno Caldeira,&nbsp;Luiz Hartmann,&nbsp;Boris Vertman\",\"doi\":\"10.1007/s10455-023-09902-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The goal of this paper is to study Yamabe flow on a complete Riemannian manifold of bounded geometry with possibly infinite volume. In case of infinite volume, standard volume normalization of the Yamabe flow fails and the flow may not converge. Instead, we consider a curvature normalized Yamabe flow, and assuming negative scalar curvature, prove its long-time existence and convergence. This extends the results of Suárez-Serrato and Tapie to a non-compact setting. In the appendix we specify our analysis to a particular example of manifolds with bounded geometry, namely manifolds with fibered boundary metric. In this case we obtain stronger estimates for the short time solution using microlocal methods.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10455-023-09902-3.pdf\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10455-023-09902-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10455-023-09902-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文的目的是研究可能具有无限体积的有界几何的完备黎曼流形上的Yamabe流。在无限体积的情况下,Yamabe流的标准体积归一化失败,流可能不会收敛。相反,我们考虑一个曲率归一化的Yamabe流,并假设负标量曲率,证明了它的长期存在性和收敛性。这将Suárez Serrato和Tapie的结果扩展到非紧凑设置。在附录中,我们指定了对具有有界几何的流形的一个特定例子的分析,即具有纤维边界度量的流形。在这种情况下,我们使用微局部方法获得了短时间解的更强估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Normalized Yamabe flow on manifolds with bounded geometry

分享
查看原文
Normalized Yamabe flow on manifolds with bounded geometry

The goal of this paper is to study Yamabe flow on a complete Riemannian manifold of bounded geometry with possibly infinite volume. In case of infinite volume, standard volume normalization of the Yamabe flow fails and the flow may not converge. Instead, we consider a curvature normalized Yamabe flow, and assuming negative scalar curvature, prove its long-time existence and convergence. This extends the results of Suárez-Serrato and Tapie to a non-compact setting. In the appendix we specify our analysis to a particular example of manifolds with bounded geometry, namely manifolds with fibered boundary metric. In this case we obtain stronger estimates for the short time solution using microlocal methods.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信