{"title":"几何有界流形上的归一化Yamabe流","authors":"Bruno Caldeira, Luiz Hartmann, Boris Vertman","doi":"10.1007/s10455-023-09902-3","DOIUrl":null,"url":null,"abstract":"<div><p>The goal of this paper is to study Yamabe flow on a complete Riemannian manifold of bounded geometry with possibly infinite volume. In case of infinite volume, standard volume normalization of the Yamabe flow fails and the flow may not converge. Instead, we consider a curvature normalized Yamabe flow, and assuming negative scalar curvature, prove its long-time existence and convergence. This extends the results of Suárez-Serrato and Tapie to a non-compact setting. In the appendix we specify our analysis to a particular example of manifolds with bounded geometry, namely manifolds with fibered boundary metric. In this case we obtain stronger estimates for the short time solution using microlocal methods.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10455-023-09902-3.pdf","citationCount":"2","resultStr":"{\"title\":\"Normalized Yamabe flow on manifolds with bounded geometry\",\"authors\":\"Bruno Caldeira, Luiz Hartmann, Boris Vertman\",\"doi\":\"10.1007/s10455-023-09902-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The goal of this paper is to study Yamabe flow on a complete Riemannian manifold of bounded geometry with possibly infinite volume. In case of infinite volume, standard volume normalization of the Yamabe flow fails and the flow may not converge. Instead, we consider a curvature normalized Yamabe flow, and assuming negative scalar curvature, prove its long-time existence and convergence. This extends the results of Suárez-Serrato and Tapie to a non-compact setting. In the appendix we specify our analysis to a particular example of manifolds with bounded geometry, namely manifolds with fibered boundary metric. In this case we obtain stronger estimates for the short time solution using microlocal methods.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10455-023-09902-3.pdf\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10455-023-09902-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10455-023-09902-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Normalized Yamabe flow on manifolds with bounded geometry
The goal of this paper is to study Yamabe flow on a complete Riemannian manifold of bounded geometry with possibly infinite volume. In case of infinite volume, standard volume normalization of the Yamabe flow fails and the flow may not converge. Instead, we consider a curvature normalized Yamabe flow, and assuming negative scalar curvature, prove its long-time existence and convergence. This extends the results of Suárez-Serrato and Tapie to a non-compact setting. In the appendix we specify our analysis to a particular example of manifolds with bounded geometry, namely manifolds with fibered boundary metric. In this case we obtain stronger estimates for the short time solution using microlocal methods.