{"title":"材料设计的密度泛函理论:基础与应用——Ⅰ","authors":"Prashant Singh, M. Harbola","doi":"10.1093/oxfmat/itab018","DOIUrl":null,"url":null,"abstract":"\n This article is part-I of a review of density-functional theory (DFT) that is the most widely used method for calculating electronic structure of materials. The accuracy and ease of numerical implementation of DFT methods has resulted in its extensive use for materials design and discovery and has thus ushered in the new field of computational material science. In this article we start with an introduction to Schrödinger equation and methods of its solutions. After presenting exact results for some well-known systems, difficulties encountered in solving the equation for interacting electrons are described. How these difficulties are handled using the variational principle for the energy to obtain approximate solutions of the Schrödinger equation is discussed. The resulting Hartree and Hartree-Fock theories are presented along with results they give for atomic and solid-state systems. We then describe Thomas-Fermi theory and its extensions which were the initial attempts to formulate many-electron problem in terms of electronic density of a system. Having described these theories, we introduce modern density functional theory by discussing Hohenberg-Kohn theorems that form its foundations. We then go on to discuss Kohn-Sham formulation of density-functional theory in its exact form. Next, local density approximation is introduced and solutions of Kohn-Sham equation for some representative systems, obtained using the local density approximation, are presented. We end part-I of the review describing the contents of part-II.","PeriodicalId":74385,"journal":{"name":"Oxford open materials science","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2021-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Density Functional Theory of Material Design: Fundamentals and Applications - I\",\"authors\":\"Prashant Singh, M. Harbola\",\"doi\":\"10.1093/oxfmat/itab018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n This article is part-I of a review of density-functional theory (DFT) that is the most widely used method for calculating electronic structure of materials. The accuracy and ease of numerical implementation of DFT methods has resulted in its extensive use for materials design and discovery and has thus ushered in the new field of computational material science. In this article we start with an introduction to Schrödinger equation and methods of its solutions. After presenting exact results for some well-known systems, difficulties encountered in solving the equation for interacting electrons are described. How these difficulties are handled using the variational principle for the energy to obtain approximate solutions of the Schrödinger equation is discussed. The resulting Hartree and Hartree-Fock theories are presented along with results they give for atomic and solid-state systems. We then describe Thomas-Fermi theory and its extensions which were the initial attempts to formulate many-electron problem in terms of electronic density of a system. Having described these theories, we introduce modern density functional theory by discussing Hohenberg-Kohn theorems that form its foundations. We then go on to discuss Kohn-Sham formulation of density-functional theory in its exact form. Next, local density approximation is introduced and solutions of Kohn-Sham equation for some representative systems, obtained using the local density approximation, are presented. We end part-I of the review describing the contents of part-II.\",\"PeriodicalId\":74385,\"journal\":{\"name\":\"Oxford open materials science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2021-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Oxford open materials science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/oxfmat/itab018\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oxford open materials science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/oxfmat/itab018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Density Functional Theory of Material Design: Fundamentals and Applications - I
This article is part-I of a review of density-functional theory (DFT) that is the most widely used method for calculating electronic structure of materials. The accuracy and ease of numerical implementation of DFT methods has resulted in its extensive use for materials design and discovery and has thus ushered in the new field of computational material science. In this article we start with an introduction to Schrödinger equation and methods of its solutions. After presenting exact results for some well-known systems, difficulties encountered in solving the equation for interacting electrons are described. How these difficulties are handled using the variational principle for the energy to obtain approximate solutions of the Schrödinger equation is discussed. The resulting Hartree and Hartree-Fock theories are presented along with results they give for atomic and solid-state systems. We then describe Thomas-Fermi theory and its extensions which were the initial attempts to formulate many-electron problem in terms of electronic density of a system. Having described these theories, we introduce modern density functional theory by discussing Hohenberg-Kohn theorems that form its foundations. We then go on to discuss Kohn-Sham formulation of density-functional theory in its exact form. Next, local density approximation is introduced and solutions of Kohn-Sham equation for some representative systems, obtained using the local density approximation, are presented. We end part-I of the review describing the contents of part-II.