{"title":"通过激活TRPM2通道消耗谷胱甘肽诱导阿尔茨海默病模型小胶质细胞凋亡和氧化应激","authors":"Ramazan Çınar","doi":"10.37212/jcnos.1147935","DOIUrl":null,"url":null,"abstract":"Alzheimer’s disease is a common neurodegenerative disease. Microglia induces oxidative stress in the brain for engulfing bacteria and viruses. The accumulating data indicate that oxidative stress and apoptosis are two main actors for the induction of microglia activation-induced Alzheimer’s Disease. Oxidative stress is one of many triggers that activate the transient receptor potential melastatin 2 (TRPM2) channel. Glutathione (GSH) is a main cytosolic antioxidant in the mammalian cells. The GSH depletion via the activation of TRPM2 induces oxidative stress and apoptosis in neuronal cells. It has not yet been researched how GSH depletion via activation of TRPM2 affects oxidative stress and apoptosis in microglial cells with the Alzheimer's disease model. The BV2 cells divided into 5 groups as control, buthionine sulphoximine (BSO and 0.5 mM for 6 h), amyloid beta (1 uM for 72 h), amyloid beta+BSO, and amyloid beta+BSO+GSH (10 mM for 2 h). In the BSO group, the levels of apoptosis, mitochondrial membrane potential, cytosolic free oxygen reactive species (cyROS), caspase (Casps) -3, Casps -8, and Casps -9 were increased as compared to the control group, although cell viability level was decreased. The expression levels of TRPM2, Casps -3, Casps -9, Bax, Bcl-2, and PARP-1 were also increased in the BSO group. In addition, their levels were further increased in the amyloid beta and BSO+amyloid beta groups as compared to the BSO group. However, the changes were modulated in the BSO+amyloid beta+GSH group by the incubation of GSH. In conclusion, the depletion of GSH increased apoptosis and cyROS levels via activation of caspases and TRPM2 in the amyloid beta-induced microglia cells. The treatment of GSH may be a potential target on the apoptosis and oxidative stress in the amyloid beta-induced microglia cells.","PeriodicalId":37782,"journal":{"name":"Journal of Cellular Neuroscience and Oxidative Stress","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Depletion of glutathione induced apoptosis and oxidative stress via the activation of TRPM2 channels in the microglia cells with Alzheimer’ disease model\",\"authors\":\"Ramazan Çınar\",\"doi\":\"10.37212/jcnos.1147935\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Alzheimer’s disease is a common neurodegenerative disease. Microglia induces oxidative stress in the brain for engulfing bacteria and viruses. The accumulating data indicate that oxidative stress and apoptosis are two main actors for the induction of microglia activation-induced Alzheimer’s Disease. Oxidative stress is one of many triggers that activate the transient receptor potential melastatin 2 (TRPM2) channel. Glutathione (GSH) is a main cytosolic antioxidant in the mammalian cells. The GSH depletion via the activation of TRPM2 induces oxidative stress and apoptosis in neuronal cells. It has not yet been researched how GSH depletion via activation of TRPM2 affects oxidative stress and apoptosis in microglial cells with the Alzheimer's disease model. The BV2 cells divided into 5 groups as control, buthionine sulphoximine (BSO and 0.5 mM for 6 h), amyloid beta (1 uM for 72 h), amyloid beta+BSO, and amyloid beta+BSO+GSH (10 mM for 2 h). In the BSO group, the levels of apoptosis, mitochondrial membrane potential, cytosolic free oxygen reactive species (cyROS), caspase (Casps) -3, Casps -8, and Casps -9 were increased as compared to the control group, although cell viability level was decreased. The expression levels of TRPM2, Casps -3, Casps -9, Bax, Bcl-2, and PARP-1 were also increased in the BSO group. In addition, their levels were further increased in the amyloid beta and BSO+amyloid beta groups as compared to the BSO group. However, the changes were modulated in the BSO+amyloid beta+GSH group by the incubation of GSH. In conclusion, the depletion of GSH increased apoptosis and cyROS levels via activation of caspases and TRPM2 in the amyloid beta-induced microglia cells. The treatment of GSH may be a potential target on the apoptosis and oxidative stress in the amyloid beta-induced microglia cells.\",\"PeriodicalId\":37782,\"journal\":{\"name\":\"Journal of Cellular Neuroscience and Oxidative Stress\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cellular Neuroscience and Oxidative Stress\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37212/jcnos.1147935\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cellular Neuroscience and Oxidative Stress","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37212/jcnos.1147935","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
Depletion of glutathione induced apoptosis and oxidative stress via the activation of TRPM2 channels in the microglia cells with Alzheimer’ disease model
Alzheimer’s disease is a common neurodegenerative disease. Microglia induces oxidative stress in the brain for engulfing bacteria and viruses. The accumulating data indicate that oxidative stress and apoptosis are two main actors for the induction of microglia activation-induced Alzheimer’s Disease. Oxidative stress is one of many triggers that activate the transient receptor potential melastatin 2 (TRPM2) channel. Glutathione (GSH) is a main cytosolic antioxidant in the mammalian cells. The GSH depletion via the activation of TRPM2 induces oxidative stress and apoptosis in neuronal cells. It has not yet been researched how GSH depletion via activation of TRPM2 affects oxidative stress and apoptosis in microglial cells with the Alzheimer's disease model. The BV2 cells divided into 5 groups as control, buthionine sulphoximine (BSO and 0.5 mM for 6 h), amyloid beta (1 uM for 72 h), amyloid beta+BSO, and amyloid beta+BSO+GSH (10 mM for 2 h). In the BSO group, the levels of apoptosis, mitochondrial membrane potential, cytosolic free oxygen reactive species (cyROS), caspase (Casps) -3, Casps -8, and Casps -9 were increased as compared to the control group, although cell viability level was decreased. The expression levels of TRPM2, Casps -3, Casps -9, Bax, Bcl-2, and PARP-1 were also increased in the BSO group. In addition, their levels were further increased in the amyloid beta and BSO+amyloid beta groups as compared to the BSO group. However, the changes were modulated in the BSO+amyloid beta+GSH group by the incubation of GSH. In conclusion, the depletion of GSH increased apoptosis and cyROS levels via activation of caspases and TRPM2 in the amyloid beta-induced microglia cells. The treatment of GSH may be a potential target on the apoptosis and oxidative stress in the amyloid beta-induced microglia cells.
期刊介绍:
Journal of Cellular Neuroscience and Oxidative Stress isan online journal that publishes original research articles, reviews and short reviews on themolecular basisofbiophysical,physiological and pharmacological processes thatregulate cellular function, and the control or alteration of these processesby theaction of receptors, neurotransmitters, second messengers, cation, anions,drugsor disease. Areas of particular interest are four topics. They are; 1. Ion Channels (Na+-K+Channels, Cl– channels, Ca2+channels, ADP-Ribose and metabolism of NAD+,Patch-Clamp applications) 2. Oxidative Stress (Antioxidant vitamins, antioxidant enzymes, metabolism of nitric oxide, oxidative stress, biophysics, biochemistry and physiology of free oxygen radicals) 3. Interaction Between Oxidative Stress and Ion Channels in Neuroscience (Effects of the oxidative stress on the activation of the voltage sensitive cation channels, effect of ADP-Ribose and NAD+ on activation of the cation channels which are sensitive to voltage, effect of the oxidative stress on activation of the TRP channels in neurodegenerative diseases such Parkinson’s and Alzheimer’s diseases) 4. Gene and Oxidative Stress (Gene abnormalities. Interaction between gene and free radicals. Gene anomalies and iron. Role of radiation and cancer on gene polymorphism)