模组的点阵分解

IF 0.5 Q3 MATHEMATICS
J. M. Garc'ia, P. Jara, L. Merino
{"title":"模组的点阵分解","authors":"J. M. Garc'ia, P. Jara, L. Merino","doi":"10.24330/IEJA.969940","DOIUrl":null,"url":null,"abstract":"The first aim of this work is to characterize when the lattice of all submodules of a module is a direct product of two lattices. In particular, which decompositions of a module $M$ produce these decompositions: the \\emph{lattice decompositions}. In a first \\textit{etage} this can be done using endomorphisms of $M$, which produce a decomposition of the ring $\\textrm{End}_R(M)$ as a product of rings, i.e., they are central idempotent endomorphisms. But since not every central idempotent endomorphism produces a lattice decomposition, the classical theory is not of application. In a second step we characterize when a particular module $M$ has a lattice decomposition; this can be done, in the commutative case in a simple way using the support, $\\textrm{Supp}(M)$, of $M$; but, in general, it is not so easy. Once we know when a module decomposes, we look for characterizing its decompositions. We show that a good framework for this study, and its generalizations, could be provided by the category $\\sigma[M]$, the smallest Grothendieck subcategory of $\\textbf{Mod}-{R}$ containing $M$.","PeriodicalId":43749,"journal":{"name":"International Electronic Journal of Algebra","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2021-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"LATTICE DECOMPOSITION OF MODULES\",\"authors\":\"J. M. Garc'ia, P. Jara, L. Merino\",\"doi\":\"10.24330/IEJA.969940\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The first aim of this work is to characterize when the lattice of all submodules of a module is a direct product of two lattices. In particular, which decompositions of a module $M$ produce these decompositions: the \\\\emph{lattice decompositions}. In a first \\\\textit{etage} this can be done using endomorphisms of $M$, which produce a decomposition of the ring $\\\\textrm{End}_R(M)$ as a product of rings, i.e., they are central idempotent endomorphisms. But since not every central idempotent endomorphism produces a lattice decomposition, the classical theory is not of application. In a second step we characterize when a particular module $M$ has a lattice decomposition; this can be done, in the commutative case in a simple way using the support, $\\\\textrm{Supp}(M)$, of $M$; but, in general, it is not so easy. Once we know when a module decomposes, we look for characterizing its decompositions. We show that a good framework for this study, and its generalizations, could be provided by the category $\\\\sigma[M]$, the smallest Grothendieck subcategory of $\\\\textbf{Mod}-{R}$ containing $M$.\",\"PeriodicalId\":43749,\"journal\":{\"name\":\"International Electronic Journal of Algebra\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2021-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Electronic Journal of Algebra\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24330/IEJA.969940\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Electronic Journal of Algebra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24330/IEJA.969940","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

这项工作的第一个目的是刻画当一个模的所有子模的格是两个格的直积时。特别是,模块$M$的哪些分解产生了这些分解:\emph{格分解}。在第一个\textit{etage}中,这可以使用$M$的自同态来完成,这产生了环$\textrm的分解{End}_R(M) $作为环的乘积,即它们是中心幂等自同态。但由于不是每个中心幂等自同态都产生格分解,因此经典理论不适用。在第二步中,我们表征特定模块$M$何时具有晶格分解;在交换情况下,这可以通过使用$M$的支持$\textrm{Supp}(M)$以简单的方式完成;但总的来说,这并不容易。一旦我们知道模块何时分解,我们就会寻找其分解的特征。我们证明,$\textbf的最小Grothendieck子类别$\sigma[M]$可以为这项研究及其推广提供一个很好的框架{Mod}-{R} 包含$M$的$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
LATTICE DECOMPOSITION OF MODULES
The first aim of this work is to characterize when the lattice of all submodules of a module is a direct product of two lattices. In particular, which decompositions of a module $M$ produce these decompositions: the \emph{lattice decompositions}. In a first \textit{etage} this can be done using endomorphisms of $M$, which produce a decomposition of the ring $\textrm{End}_R(M)$ as a product of rings, i.e., they are central idempotent endomorphisms. But since not every central idempotent endomorphism produces a lattice decomposition, the classical theory is not of application. In a second step we characterize when a particular module $M$ has a lattice decomposition; this can be done, in the commutative case in a simple way using the support, $\textrm{Supp}(M)$, of $M$; but, in general, it is not so easy. Once we know when a module decomposes, we look for characterizing its decompositions. We show that a good framework for this study, and its generalizations, could be provided by the category $\sigma[M]$, the smallest Grothendieck subcategory of $\textbf{Mod}-{R}$ containing $M$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
16.70%
发文量
36
审稿时长
36 weeks
期刊介绍: The International Electronic Journal of Algebra is published twice a year. IEJA is reviewed by Mathematical Reviews, MathSciNet, Zentralblatt MATH, Current Mathematical Publications. IEJA seeks previously unpublished papers that contain: Module theory Ring theory Group theory Algebras Comodules Corings Coalgebras Representation theory Number theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信