{"title":"模组的点阵分解","authors":"J. M. Garc'ia, P. Jara, L. Merino","doi":"10.24330/IEJA.969940","DOIUrl":null,"url":null,"abstract":"The first aim of this work is to characterize when the lattice of all submodules of a module is a direct product of two lattices. In particular, which decompositions of a module $M$ produce these decompositions: the \\emph{lattice decompositions}. In a first \\textit{etage} this can be done using endomorphisms of $M$, which produce a decomposition of the ring $\\textrm{End}_R(M)$ as a product of rings, i.e., they are central idempotent endomorphisms. But since not every central idempotent endomorphism produces a lattice decomposition, the classical theory is not of application. In a second step we characterize when a particular module $M$ has a lattice decomposition; this can be done, in the commutative case in a simple way using the support, $\\textrm{Supp}(M)$, of $M$; but, in general, it is not so easy. Once we know when a module decomposes, we look for characterizing its decompositions. We show that a good framework for this study, and its generalizations, could be provided by the category $\\sigma[M]$, the smallest Grothendieck subcategory of $\\textbf{Mod}-{R}$ containing $M$.","PeriodicalId":43749,"journal":{"name":"International Electronic Journal of Algebra","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2021-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"LATTICE DECOMPOSITION OF MODULES\",\"authors\":\"J. M. Garc'ia, P. Jara, L. Merino\",\"doi\":\"10.24330/IEJA.969940\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The first aim of this work is to characterize when the lattice of all submodules of a module is a direct product of two lattices. In particular, which decompositions of a module $M$ produce these decompositions: the \\\\emph{lattice decompositions}. In a first \\\\textit{etage} this can be done using endomorphisms of $M$, which produce a decomposition of the ring $\\\\textrm{End}_R(M)$ as a product of rings, i.e., they are central idempotent endomorphisms. But since not every central idempotent endomorphism produces a lattice decomposition, the classical theory is not of application. In a second step we characterize when a particular module $M$ has a lattice decomposition; this can be done, in the commutative case in a simple way using the support, $\\\\textrm{Supp}(M)$, of $M$; but, in general, it is not so easy. Once we know when a module decomposes, we look for characterizing its decompositions. We show that a good framework for this study, and its generalizations, could be provided by the category $\\\\sigma[M]$, the smallest Grothendieck subcategory of $\\\\textbf{Mod}-{R}$ containing $M$.\",\"PeriodicalId\":43749,\"journal\":{\"name\":\"International Electronic Journal of Algebra\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2021-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Electronic Journal of Algebra\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24330/IEJA.969940\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Electronic Journal of Algebra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24330/IEJA.969940","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
The first aim of this work is to characterize when the lattice of all submodules of a module is a direct product of two lattices. In particular, which decompositions of a module $M$ produce these decompositions: the \emph{lattice decompositions}. In a first \textit{etage} this can be done using endomorphisms of $M$, which produce a decomposition of the ring $\textrm{End}_R(M)$ as a product of rings, i.e., they are central idempotent endomorphisms. But since not every central idempotent endomorphism produces a lattice decomposition, the classical theory is not of application. In a second step we characterize when a particular module $M$ has a lattice decomposition; this can be done, in the commutative case in a simple way using the support, $\textrm{Supp}(M)$, of $M$; but, in general, it is not so easy. Once we know when a module decomposes, we look for characterizing its decompositions. We show that a good framework for this study, and its generalizations, could be provided by the category $\sigma[M]$, the smallest Grothendieck subcategory of $\textbf{Mod}-{R}$ containing $M$.
期刊介绍:
The International Electronic Journal of Algebra is published twice a year. IEJA is reviewed by Mathematical Reviews, MathSciNet, Zentralblatt MATH, Current Mathematical Publications. IEJA seeks previously unpublished papers that contain: Module theory Ring theory Group theory Algebras Comodules Corings Coalgebras Representation theory Number theory.