{"title":"关于伽玛分布、双曲单调密度分布和广义伽玛卷积的混合","authors":"Tord Sjödin","doi":"10.37190/0208-4147.41.1.1","DOIUrl":null,"url":null,"abstract":"Let $Y$ be a standard Gamma(k) distributed random variable, $k>0$, and let $X$ be an independent positive random variable. We prove that if $X$ has a hyperbolically monotone density of order $k$ ($HM_k$), then the distributions of $Y\\cdot X$ and $Y/X$ are generalized gamma convolutions (GGC). This result extends results of Roynette et al. and Behme and Bondesson, who treated respectively the cases $k=1$ and $k$ an integer. We give a proof that covers all $k>0$ and gives explicit formulas for the relevant functions that extend those found by Behme and Bondesson in the integer case.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2018-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Mixtures of Gamma distributions, distributions with hyperbolically monotone densities and Generalized Gamma Convolutions (GGC)\",\"authors\":\"Tord Sjödin\",\"doi\":\"10.37190/0208-4147.41.1.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $Y$ be a standard Gamma(k) distributed random variable, $k>0$, and let $X$ be an independent positive random variable. We prove that if $X$ has a hyperbolically monotone density of order $k$ ($HM_k$), then the distributions of $Y\\\\cdot X$ and $Y/X$ are generalized gamma convolutions (GGC). This result extends results of Roynette et al. and Behme and Bondesson, who treated respectively the cases $k=1$ and $k$ an integer. We give a proof that covers all $k>0$ and gives explicit formulas for the relevant functions that extend those found by Behme and Bondesson in the integer case.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2018-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.37190/0208-4147.41.1.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.37190/0208-4147.41.1.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
设$Y$为标准的Gamma(k)分布随机变量,$k>0$,设$X$为独立的正随机变量。证明了如果$X$具有$k$ ($HM_k$)阶的双曲单调密度,则$Y\cdot X$和$Y/X$的分布是广义伽马卷积(GGC)。这个结果扩展了Roynette et al.和Behme and Bondesson的结果,他们分别处理了$k=1$和$k$为整数的情况。我们给出了一个涵盖所有$k> $的证明,并给出了扩展Behme和Bondesson在整数情况下发现的相关函数的显式公式。
On Mixtures of Gamma distributions, distributions with hyperbolically monotone densities and Generalized Gamma Convolutions (GGC)
Let $Y$ be a standard Gamma(k) distributed random variable, $k>0$, and let $X$ be an independent positive random variable. We prove that if $X$ has a hyperbolically monotone density of order $k$ ($HM_k$), then the distributions of $Y\cdot X$ and $Y/X$ are generalized gamma convolutions (GGC). This result extends results of Roynette et al. and Behme and Bondesson, who treated respectively the cases $k=1$ and $k$ an integer. We give a proof that covers all $k>0$ and gives explicit formulas for the relevant functions that extend those found by Behme and Bondesson in the integer case.