关于伽玛分布、双曲单调密度分布和广义伽玛卷积的混合

Pub Date : 2018-06-11 DOI:10.37190/0208-4147.41.1.1
Tord Sjödin
{"title":"关于伽玛分布、双曲单调密度分布和广义伽玛卷积的混合","authors":"Tord Sjödin","doi":"10.37190/0208-4147.41.1.1","DOIUrl":null,"url":null,"abstract":"Let $Y$ be a standard Gamma(k) distributed random variable, $k>0$, and let $X$ be an independent positive random variable. We prove that if $X$ has a hyperbolically monotone density of order $k$ ($HM_k$), then the distributions of $Y\\cdot X$ and $Y/X$ are generalized gamma convolutions (GGC). This result extends results of Roynette et al. and Behme and Bondesson, who treated respectively the cases $k=1$ and $k$ an integer. We give a proof that covers all $k>0$ and gives explicit formulas for the relevant functions that extend those found by Behme and Bondesson in the integer case.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2018-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Mixtures of Gamma distributions, distributions with hyperbolically monotone densities and Generalized Gamma Convolutions (GGC)\",\"authors\":\"Tord Sjödin\",\"doi\":\"10.37190/0208-4147.41.1.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $Y$ be a standard Gamma(k) distributed random variable, $k>0$, and let $X$ be an independent positive random variable. We prove that if $X$ has a hyperbolically monotone density of order $k$ ($HM_k$), then the distributions of $Y\\\\cdot X$ and $Y/X$ are generalized gamma convolutions (GGC). This result extends results of Roynette et al. and Behme and Bondesson, who treated respectively the cases $k=1$ and $k$ an integer. We give a proof that covers all $k>0$ and gives explicit formulas for the relevant functions that extend those found by Behme and Bondesson in the integer case.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2018-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.37190/0208-4147.41.1.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.37190/0208-4147.41.1.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

设$Y$为标准的Gamma(k)分布随机变量,$k>0$,设$X$为独立的正随机变量。证明了如果$X$具有$k$ ($HM_k$)阶的双曲单调密度,则$Y\cdot X$和$Y/X$的分布是广义伽马卷积(GGC)。这个结果扩展了Roynette et al.和Behme and Bondesson的结果,他们分别处理了$k=1$和$k$为整数的情况。我们给出了一个涵盖所有$k> $的证明,并给出了扩展Behme和Bondesson在整数情况下发现的相关函数的显式公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
On Mixtures of Gamma distributions, distributions with hyperbolically monotone densities and Generalized Gamma Convolutions (GGC)
Let $Y$ be a standard Gamma(k) distributed random variable, $k>0$, and let $X$ be an independent positive random variable. We prove that if $X$ has a hyperbolically monotone density of order $k$ ($HM_k$), then the distributions of $Y\cdot X$ and $Y/X$ are generalized gamma convolutions (GGC). This result extends results of Roynette et al. and Behme and Bondesson, who treated respectively the cases $k=1$ and $k$ an integer. We give a proof that covers all $k>0$ and gives explicit formulas for the relevant functions that extend those found by Behme and Bondesson in the integer case.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信