D s,2(RN)与C(RN)局部极小值

IF 1.1 4区 数学 Q2 MATHEMATICS, APPLIED
V. Ambrosio
{"title":"D s,2(RN)与C(RN)局部极小值","authors":"V. Ambrosio","doi":"10.3233/asy-231833","DOIUrl":null,"url":null,"abstract":"Let s ∈ ( 0 , 1 ), N > 2 s and D s , 2 ( R N ) : = { u ∈ L 2 s ∗ ( R N ) : ‖ u ‖ D s , 2 ( R N ) : = ( C N , s 2 ∬ R 2 N | u ( x ) − u ( y ) | 2 | x − y | N + 2 s d x d y ) 1 2 < ∞ } , where 2 s ∗ : = 2 N N − 2 s is the fractional critical exponent and C N , s is a positive constant. We consider functionals J : D s , 2 ( R N ) → R of the type J ( u ) : = 1 2 ‖ u ‖ D s , 2 ( R N ) 2 − ∫ R N b ( x ) G ( u ) d x , where G ( t ) : = ∫ 0 t g ( τ ) d τ, g : R → R is a continuous function with subcritical growth at infinity, and b : R N → R is a suitable weight function. We prove that a local minimizer of J in the topology of the subspace V s : = { u ∈ D s , 2 ( R N ) : u ∈ C ( R N )  with  sup x ∈ R N ( 1 + | x | N − 2 s ) | u ( x ) | < ∞ } must be a local minimizer of J in the D s , 2 ( R N )-topology.","PeriodicalId":55438,"journal":{"name":"Asymptotic Analysis","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2023-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"D s , 2 ( R N ) versus C ( R N ) local minimizers\",\"authors\":\"V. Ambrosio\",\"doi\":\"10.3233/asy-231833\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let s ∈ ( 0 , 1 ), N > 2 s and D s , 2 ( R N ) : = { u ∈ L 2 s ∗ ( R N ) : ‖ u ‖ D s , 2 ( R N ) : = ( C N , s 2 ∬ R 2 N | u ( x ) − u ( y ) | 2 | x − y | N + 2 s d x d y ) 1 2 < ∞ } , where 2 s ∗ : = 2 N N − 2 s is the fractional critical exponent and C N , s is a positive constant. We consider functionals J : D s , 2 ( R N ) → R of the type J ( u ) : = 1 2 ‖ u ‖ D s , 2 ( R N ) 2 − ∫ R N b ( x ) G ( u ) d x , where G ( t ) : = ∫ 0 t g ( τ ) d τ, g : R → R is a continuous function with subcritical growth at infinity, and b : R N → R is a suitable weight function. We prove that a local minimizer of J in the topology of the subspace V s : = { u ∈ D s , 2 ( R N ) : u ∈ C ( R N )  with  sup x ∈ R N ( 1 + | x | N − 2 s ) | u ( x ) | < ∞ } must be a local minimizer of J in the D s , 2 ( R N )-topology.\",\"PeriodicalId\":55438,\"journal\":{\"name\":\"Asymptotic Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asymptotic Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3233/asy-231833\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asymptotic Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3233/asy-231833","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

让s∈(0,1),N > 2 s和D, N (R): R ={美国洛杉矶∈2∗(N):‖美国‖D, 2 (N): R = C (N, s 2∬R | u (x)−y y u (x) | 2 |−| N + 2 s D×D y) 1 2 <∞,哪里的s∗:s = N N−2是《fractional连接exponent C和N, s是一个积极、康斯坦。我们认为functionals j.r.: D s, 2处(N)→R J型》(u): = 1‖D‖美国,2 (R N) 2−∫R N b (x) G (u) dx,哪里G (t): t =∫0 G(ττ)D, G: a R→R是挑战功能subcritical增长at无限,和b: R N→R是a suitable)功能。我们证明那a local minimizer J在topology》之子空间V s: R ={美国∈D, 2 (N): u R∈C (N)和汤x∈R N (1 + s | x | N−2)| u (x) | <∞的一定是a local minimizer j.r.》D s, 2处(N) -topology。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
D s , 2 ( R N ) versus C ( R N ) local minimizers
Let s ∈ ( 0 , 1 ), N > 2 s and D s , 2 ( R N ) : = { u ∈ L 2 s ∗ ( R N ) : ‖ u ‖ D s , 2 ( R N ) : = ( C N , s 2 ∬ R 2 N | u ( x ) − u ( y ) | 2 | x − y | N + 2 s d x d y ) 1 2 < ∞ } , where 2 s ∗ : = 2 N N − 2 s is the fractional critical exponent and C N , s is a positive constant. We consider functionals J : D s , 2 ( R N ) → R of the type J ( u ) : = 1 2 ‖ u ‖ D s , 2 ( R N ) 2 − ∫ R N b ( x ) G ( u ) d x , where G ( t ) : = ∫ 0 t g ( τ ) d τ, g : R → R is a continuous function with subcritical growth at infinity, and b : R N → R is a suitable weight function. We prove that a local minimizer of J in the topology of the subspace V s : = { u ∈ D s , 2 ( R N ) : u ∈ C ( R N )  with  sup x ∈ R N ( 1 + | x | N − 2 s ) | u ( x ) | < ∞ } must be a local minimizer of J in the D s , 2 ( R N )-topology.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Asymptotic Analysis
Asymptotic Analysis 数学-应用数学
CiteScore
1.90
自引率
7.10%
发文量
91
审稿时长
6 months
期刊介绍: The journal Asymptotic Analysis fulfills a twofold function. It aims at publishing original mathematical results in the asymptotic theory of problems affected by the presence of small or large parameters on the one hand, and at giving specific indications of their possible applications to different fields of natural sciences on the other hand. Asymptotic Analysis thus provides mathematicians with a concentrated source of newly acquired information which they may need in the analysis of asymptotic problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信