{"title":"D s,2(RN)与C(RN)局部极小值","authors":"V. Ambrosio","doi":"10.3233/asy-231833","DOIUrl":null,"url":null,"abstract":"Let s ∈ ( 0 , 1 ), N > 2 s and D s , 2 ( R N ) : = { u ∈ L 2 s ∗ ( R N ) : ‖ u ‖ D s , 2 ( R N ) : = ( C N , s 2 ∬ R 2 N | u ( x ) − u ( y ) | 2 | x − y | N + 2 s d x d y ) 1 2 < ∞ } , where 2 s ∗ : = 2 N N − 2 s is the fractional critical exponent and C N , s is a positive constant. We consider functionals J : D s , 2 ( R N ) → R of the type J ( u ) : = 1 2 ‖ u ‖ D s , 2 ( R N ) 2 − ∫ R N b ( x ) G ( u ) d x , where G ( t ) : = ∫ 0 t g ( τ ) d τ, g : R → R is a continuous function with subcritical growth at infinity, and b : R N → R is a suitable weight function. We prove that a local minimizer of J in the topology of the subspace V s : = { u ∈ D s , 2 ( R N ) : u ∈ C ( R N ) with sup x ∈ R N ( 1 + | x | N − 2 s ) | u ( x ) | < ∞ } must be a local minimizer of J in the D s , 2 ( R N )-topology.","PeriodicalId":55438,"journal":{"name":"Asymptotic Analysis","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2023-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"D s , 2 ( R N ) versus C ( R N ) local minimizers\",\"authors\":\"V. Ambrosio\",\"doi\":\"10.3233/asy-231833\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let s ∈ ( 0 , 1 ), N > 2 s and D s , 2 ( R N ) : = { u ∈ L 2 s ∗ ( R N ) : ‖ u ‖ D s , 2 ( R N ) : = ( C N , s 2 ∬ R 2 N | u ( x ) − u ( y ) | 2 | x − y | N + 2 s d x d y ) 1 2 < ∞ } , where 2 s ∗ : = 2 N N − 2 s is the fractional critical exponent and C N , s is a positive constant. We consider functionals J : D s , 2 ( R N ) → R of the type J ( u ) : = 1 2 ‖ u ‖ D s , 2 ( R N ) 2 − ∫ R N b ( x ) G ( u ) d x , where G ( t ) : = ∫ 0 t g ( τ ) d τ, g : R → R is a continuous function with subcritical growth at infinity, and b : R N → R is a suitable weight function. We prove that a local minimizer of J in the topology of the subspace V s : = { u ∈ D s , 2 ( R N ) : u ∈ C ( R N ) with sup x ∈ R N ( 1 + | x | N − 2 s ) | u ( x ) | < ∞ } must be a local minimizer of J in the D s , 2 ( R N )-topology.\",\"PeriodicalId\":55438,\"journal\":{\"name\":\"Asymptotic Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asymptotic Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3233/asy-231833\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asymptotic Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3233/asy-231833","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
摘要
让s∈(0,1),N > 2 s和D, N (R): R ={美国洛杉矶∈2∗(N):‖美国‖D, 2 (N): R = C (N, s 2∬R | u (x)−y y u (x) | 2 |−| N + 2 s D×D y) 1 2 <∞,哪里的s∗:s = N N−2是《fractional连接exponent C和N, s是一个积极、康斯坦。我们认为functionals j.r.: D s, 2处(N)→R J型》(u): = 1‖D‖美国,2 (R N) 2−∫R N b (x) G (u) dx,哪里G (t): t =∫0 G(ττ)D, G: a R→R是挑战功能subcritical增长at无限,和b: R N→R是a suitable)功能。我们证明那a local minimizer J在topology》之子空间V s: R ={美国∈D, 2 (N): u R∈C (N)和汤x∈R N (1 + s | x | N−2)| u (x) | <∞的一定是a local minimizer j.r.》D s, 2处(N) -topology。
Let s ∈ ( 0 , 1 ), N > 2 s and D s , 2 ( R N ) : = { u ∈ L 2 s ∗ ( R N ) : ‖ u ‖ D s , 2 ( R N ) : = ( C N , s 2 ∬ R 2 N | u ( x ) − u ( y ) | 2 | x − y | N + 2 s d x d y ) 1 2 < ∞ } , where 2 s ∗ : = 2 N N − 2 s is the fractional critical exponent and C N , s is a positive constant. We consider functionals J : D s , 2 ( R N ) → R of the type J ( u ) : = 1 2 ‖ u ‖ D s , 2 ( R N ) 2 − ∫ R N b ( x ) G ( u ) d x , where G ( t ) : = ∫ 0 t g ( τ ) d τ, g : R → R is a continuous function with subcritical growth at infinity, and b : R N → R is a suitable weight function. We prove that a local minimizer of J in the topology of the subspace V s : = { u ∈ D s , 2 ( R N ) : u ∈ C ( R N ) with sup x ∈ R N ( 1 + | x | N − 2 s ) | u ( x ) | < ∞ } must be a local minimizer of J in the D s , 2 ( R N )-topology.
期刊介绍:
The journal Asymptotic Analysis fulfills a twofold function. It aims at publishing original mathematical results in the asymptotic theory of problems affected by the presence of small or large parameters on the one hand, and at giving specific indications of their possible applications to different fields of natural sciences on the other hand. Asymptotic Analysis thus provides mathematicians with a concentrated source of newly acquired information which they may need in the analysis of asymptotic problems.