{"title":"距离、原点和类别约束的路径","authors":"Xu Teng, Goce Trajcevski, Andreas Züfle","doi":"10.1145/3596601","DOIUrl":null,"url":null,"abstract":"Recommending a Point of Interest (PoI) or a sequence of PoIs to visit based on user’s preferences and geo-locations has been one of the most popular applications of Location-Based Services (LBS). Variants have also been considered which take other factors into consideration, such as broader (implicit or explicit) semantic constraints as well as the limitations on the length of the trip. In this work, we present an efficient algorithmic solution to a novel query – PaDOC (Paths with Distance, Origin, and Category constraints) – which combines the generation of a path that (a) can be traversed within a user-specified budget (e.g., limit on distance), (b) starts at one of the user-specified origin locations (e.g., a hotel), and (c) contains PoIs from a user-specified list of PoI categories. We show that the problem of deciding whether such a path exists is an NP-hard problem. Based on a novel indexing structure, we propose two efficient algorithms for approximate PaDOC query processing based on both conservative and progressive distance estimations. We conducted extensive experiments over real, publicly available datasets, demonstrating the benefits of the proposed methodologies over straightforward solutions.","PeriodicalId":43641,"journal":{"name":"ACM Transactions on Spatial Algorithms and Systems","volume":"9 1","pages":"1 - 27"},"PeriodicalIF":1.2000,"publicationDate":"2023-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Distance, Origin and Category Constrained Paths\",\"authors\":\"Xu Teng, Goce Trajcevski, Andreas Züfle\",\"doi\":\"10.1145/3596601\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recommending a Point of Interest (PoI) or a sequence of PoIs to visit based on user’s preferences and geo-locations has been one of the most popular applications of Location-Based Services (LBS). Variants have also been considered which take other factors into consideration, such as broader (implicit or explicit) semantic constraints as well as the limitations on the length of the trip. In this work, we present an efficient algorithmic solution to a novel query – PaDOC (Paths with Distance, Origin, and Category constraints) – which combines the generation of a path that (a) can be traversed within a user-specified budget (e.g., limit on distance), (b) starts at one of the user-specified origin locations (e.g., a hotel), and (c) contains PoIs from a user-specified list of PoI categories. We show that the problem of deciding whether such a path exists is an NP-hard problem. Based on a novel indexing structure, we propose two efficient algorithms for approximate PaDOC query processing based on both conservative and progressive distance estimations. We conducted extensive experiments over real, publicly available datasets, demonstrating the benefits of the proposed methodologies over straightforward solutions.\",\"PeriodicalId\":43641,\"journal\":{\"name\":\"ACM Transactions on Spatial Algorithms and Systems\",\"volume\":\"9 1\",\"pages\":\"1 - 27\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Spatial Algorithms and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3596601\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"REMOTE SENSING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Spatial Algorithms and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3596601","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"REMOTE SENSING","Score":null,"Total":0}
Recommending a Point of Interest (PoI) or a sequence of PoIs to visit based on user’s preferences and geo-locations has been one of the most popular applications of Location-Based Services (LBS). Variants have also been considered which take other factors into consideration, such as broader (implicit or explicit) semantic constraints as well as the limitations on the length of the trip. In this work, we present an efficient algorithmic solution to a novel query – PaDOC (Paths with Distance, Origin, and Category constraints) – which combines the generation of a path that (a) can be traversed within a user-specified budget (e.g., limit on distance), (b) starts at one of the user-specified origin locations (e.g., a hotel), and (c) contains PoIs from a user-specified list of PoI categories. We show that the problem of deciding whether such a path exists is an NP-hard problem. Based on a novel indexing structure, we propose two efficient algorithms for approximate PaDOC query processing based on both conservative and progressive distance estimations. We conducted extensive experiments over real, publicly available datasets, demonstrating the benefits of the proposed methodologies over straightforward solutions.
期刊介绍:
ACM Transactions on Spatial Algorithms and Systems (TSAS) is a scholarly journal that publishes the highest quality papers on all aspects of spatial algorithms and systems and closely related disciplines. It has a multi-disciplinary perspective in that it spans a large number of areas where spatial data is manipulated or visualized (regardless of how it is specified - i.e., geometrically or textually) such as geography, geographic information systems (GIS), geospatial and spatiotemporal databases, spatial and metric indexing, location-based services, web-based spatial applications, geographic information retrieval (GIR), spatial reasoning and mining, security and privacy, as well as the related visual computing areas of computer graphics, computer vision, geometric modeling, and visualization where the spatial, geospatial, and spatiotemporal data is central.