拓扑群类群与Hurewicz态射的推广

IF 0.6 4区 数学 Q3 MATHEMATICS
Saikat Chatterjee, Praphulla Koushik
{"title":"拓扑群类群与Hurewicz态射的推广","authors":"Saikat Chatterjee,&nbsp;Praphulla Koushik","doi":"10.1007/s10485-023-09744-x","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we introduce the notion of a topological groupoid extension and relate it to the already existing notion of a gerbe over a topological stack. We further study the properties of a gerbe over a Hurewicz (resp. Serre) stack.\n\n</p></div>","PeriodicalId":7952,"journal":{"name":"Applied Categorical Structures","volume":"31 5","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10485-023-09744-x.pdf","citationCount":"0","resultStr":"{\"title\":\"Extension of Topological Groupoids and Hurewicz Morphisms\",\"authors\":\"Saikat Chatterjee,&nbsp;Praphulla Koushik\",\"doi\":\"10.1007/s10485-023-09744-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we introduce the notion of a topological groupoid extension and relate it to the already existing notion of a gerbe over a topological stack. We further study the properties of a gerbe over a Hurewicz (resp. Serre) stack.\\n\\n</p></div>\",\"PeriodicalId\":7952,\"journal\":{\"name\":\"Applied Categorical Structures\",\"volume\":\"31 5\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10485-023-09744-x.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Categorical Structures\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10485-023-09744-x\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Categorical Structures","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10485-023-09744-x","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们引入了拓扑群类群扩展的概念,并将其与已有的拓扑堆上的gerbe的概念联系起来。我们进一步研究了Hurewicz方程上gerbe的性质。Serre)堆栈。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Extension of Topological Groupoids and Hurewicz Morphisms

In this paper, we introduce the notion of a topological groupoid extension and relate it to the already existing notion of a gerbe over a topological stack. We further study the properties of a gerbe over a Hurewicz (resp. Serre) stack.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
16.70%
发文量
29
审稿时长
>12 weeks
期刊介绍: Applied Categorical Structures focuses on applications of results, techniques and ideas from category theory to mathematics, physics and computer science. These include the study of topological and algebraic categories, representation theory, algebraic geometry, homological and homotopical algebra, derived and triangulated categories, categorification of (geometric) invariants, categorical investigations in mathematical physics, higher category theory and applications, categorical investigations in functional analysis, in continuous order theory and in theoretical computer science. In addition, the journal also follows the development of emerging fields in which the application of categorical methods proves to be relevant. Applied Categorical Structures publishes both carefully refereed research papers and survey papers. It promotes communication and increases the dissemination of new results and ideas among mathematicians and computer scientists who use categorical methods in their research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信