Steven Johannesen, T. Lagarigue, Gordon Shearer, K. Owen, Grant Wood, W. Hendry
{"title":"减少备份工具需求:风险与收益的概率分析","authors":"Steven Johannesen, T. Lagarigue, Gordon Shearer, K. Owen, Grant Wood, W. Hendry","doi":"10.2118/204021-pa","DOIUrl":null,"url":null,"abstract":"\n A review of the use of measurement while drilling (MWD), logging while drilling (LWD), and directional drilling (DD) tools mobilized to offshore drilling units in the North Sea highlighted an opportunity to lower operational cost for the operator and reduce capital used for the oilfield services company. An objective was set to develop a risk-based probability model that would assess the positive and negative financial impacts of reducing, or perhaps entirely removing, backup tools in this historically risk-averse basin. The scope of the initial analysis was a drilling campaign on a single rig contracted by the operator (Rig A). This analysis was then extended to review scenarios in which several operations in close proximity would share backup tools.\n The last 3 years of MWD/LWD/DD tool reliability data from North Sea operations, recorded by the oilfield services company, were used as an input. To assess the probability of failure, a binomial model was developed to create a binomial distribution for each tool to calculate the probability of having zero to X failures for a selected tool or bottomhole assembly (BHA) for a given number of runs. Three binomial models were developed to study the effect of “easy,” “moderate,” and “challenging” drilling environments on tool reliability. A financial risk model was designed to balance the probability-weighted cost of failure for the operator against the lower costs resulting from reduced tool provision by the oilfield services company. To better estimate risks and financial impacts on the project, a sensitivity analysis was performed on the financial risk model using the three binomial models.\n As a result of the analysis, it was demonstrated that recent improvements in tool reliability support a reduction in the provision of backup MWD/LWD/DD drilling tools for the majority of North Sea drilling scenarios.","PeriodicalId":51165,"journal":{"name":"SPE Drilling & Completion","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reduction in Backup Tool Requirements: Risks vs. Benefits, a Probability Analysis\",\"authors\":\"Steven Johannesen, T. Lagarigue, Gordon Shearer, K. Owen, Grant Wood, W. Hendry\",\"doi\":\"10.2118/204021-pa\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n A review of the use of measurement while drilling (MWD), logging while drilling (LWD), and directional drilling (DD) tools mobilized to offshore drilling units in the North Sea highlighted an opportunity to lower operational cost for the operator and reduce capital used for the oilfield services company. An objective was set to develop a risk-based probability model that would assess the positive and negative financial impacts of reducing, or perhaps entirely removing, backup tools in this historically risk-averse basin. The scope of the initial analysis was a drilling campaign on a single rig contracted by the operator (Rig A). This analysis was then extended to review scenarios in which several operations in close proximity would share backup tools.\\n The last 3 years of MWD/LWD/DD tool reliability data from North Sea operations, recorded by the oilfield services company, were used as an input. To assess the probability of failure, a binomial model was developed to create a binomial distribution for each tool to calculate the probability of having zero to X failures for a selected tool or bottomhole assembly (BHA) for a given number of runs. Three binomial models were developed to study the effect of “easy,” “moderate,” and “challenging” drilling environments on tool reliability. A financial risk model was designed to balance the probability-weighted cost of failure for the operator against the lower costs resulting from reduced tool provision by the oilfield services company. To better estimate risks and financial impacts on the project, a sensitivity analysis was performed on the financial risk model using the three binomial models.\\n As a result of the analysis, it was demonstrated that recent improvements in tool reliability support a reduction in the provision of backup MWD/LWD/DD drilling tools for the majority of North Sea drilling scenarios.\",\"PeriodicalId\":51165,\"journal\":{\"name\":\"SPE Drilling & Completion\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2021-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SPE Drilling & Completion\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.2118/204021-pa\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, PETROLEUM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SPE Drilling & Completion","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2118/204021-pa","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, PETROLEUM","Score":null,"Total":0}
Reduction in Backup Tool Requirements: Risks vs. Benefits, a Probability Analysis
A review of the use of measurement while drilling (MWD), logging while drilling (LWD), and directional drilling (DD) tools mobilized to offshore drilling units in the North Sea highlighted an opportunity to lower operational cost for the operator and reduce capital used for the oilfield services company. An objective was set to develop a risk-based probability model that would assess the positive and negative financial impacts of reducing, or perhaps entirely removing, backup tools in this historically risk-averse basin. The scope of the initial analysis was a drilling campaign on a single rig contracted by the operator (Rig A). This analysis was then extended to review scenarios in which several operations in close proximity would share backup tools.
The last 3 years of MWD/LWD/DD tool reliability data from North Sea operations, recorded by the oilfield services company, were used as an input. To assess the probability of failure, a binomial model was developed to create a binomial distribution for each tool to calculate the probability of having zero to X failures for a selected tool or bottomhole assembly (BHA) for a given number of runs. Three binomial models were developed to study the effect of “easy,” “moderate,” and “challenging” drilling environments on tool reliability. A financial risk model was designed to balance the probability-weighted cost of failure for the operator against the lower costs resulting from reduced tool provision by the oilfield services company. To better estimate risks and financial impacts on the project, a sensitivity analysis was performed on the financial risk model using the three binomial models.
As a result of the analysis, it was demonstrated that recent improvements in tool reliability support a reduction in the provision of backup MWD/LWD/DD drilling tools for the majority of North Sea drilling scenarios.
期刊介绍:
Covers horizontal and directional drilling, drilling fluids, bit technology, sand control, perforating, cementing, well control, completions and drilling operations.