利用分数傅立叶变换刻画回转器变换

IF 0.7 3区 数学 Q2 MATHEMATICS
T. Kagawa, Toshio Suzuki
{"title":"利用分数傅立叶变换刻画回转器变换","authors":"T. Kagawa, Toshio Suzuki","doi":"10.1080/10652469.2022.2138868","DOIUrl":null,"url":null,"abstract":"ABSTRACT In this note, we will explain the relationship between the fractional Fourier transform and the gyrator transform. In particular, we will show the properties of the gyrator transform, which is getting the eigenfunction and eigenvalue of the gyrator transform, recursion formula, the relation between the Wigner distribution and the gyrator transform, the differential equation satisfied with the gyrator transform of some functions, and the representation of the gyrator transform as the self-adjoint operator. Moreover, we will consider the generalized gyrator transform of tempered distributions.","PeriodicalId":54972,"journal":{"name":"Integral Transforms and Special Functions","volume":"34 1","pages":"399 - 413"},"PeriodicalIF":0.7000,"publicationDate":"2022-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterizations of the gyrator transform via the fractional Fourier transform\",\"authors\":\"T. Kagawa, Toshio Suzuki\",\"doi\":\"10.1080/10652469.2022.2138868\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT In this note, we will explain the relationship between the fractional Fourier transform and the gyrator transform. In particular, we will show the properties of the gyrator transform, which is getting the eigenfunction and eigenvalue of the gyrator transform, recursion formula, the relation between the Wigner distribution and the gyrator transform, the differential equation satisfied with the gyrator transform of some functions, and the representation of the gyrator transform as the self-adjoint operator. Moreover, we will consider the generalized gyrator transform of tempered distributions.\",\"PeriodicalId\":54972,\"journal\":{\"name\":\"Integral Transforms and Special Functions\",\"volume\":\"34 1\",\"pages\":\"399 - 413\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2022-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Integral Transforms and Special Functions\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/10652469.2022.2138868\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Integral Transforms and Special Functions","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/10652469.2022.2138868","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要在本文中,我们将解释分数傅立叶变换和回转器变换之间的关系。特别地,我们将展示回转器变换的性质,即得到回转器变换本征函数和本征值,递归公式,Wigner分布与回转器变换之间的关系,满足某些函数的回转器变换所需的微分方程,以及回转器变换作为自伴算子的表示。此外,我们将考虑回火分布的广义回转器变换。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Characterizations of the gyrator transform via the fractional Fourier transform
ABSTRACT In this note, we will explain the relationship between the fractional Fourier transform and the gyrator transform. In particular, we will show the properties of the gyrator transform, which is getting the eigenfunction and eigenvalue of the gyrator transform, recursion formula, the relation between the Wigner distribution and the gyrator transform, the differential equation satisfied with the gyrator transform of some functions, and the representation of the gyrator transform as the self-adjoint operator. Moreover, we will consider the generalized gyrator transform of tempered distributions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
20.00%
发文量
49
审稿时长
6-12 weeks
期刊介绍: Integral Transforms and Special Functions belongs to the basic subjects of mathematical analysis, the theory of differential and integral equations, approximation theory, and to many other areas of pure and applied mathematics. Although centuries old, these subjects are under intense development, for use in pure and applied mathematics, physics, engineering and computer science. This stimulates continuous interest for researchers in these fields. The aim of Integral Transforms and Special Functions is to foster further growth by providing a means for the publication of important research on all aspects of the subjects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信