{"title":"利用分数傅立叶变换刻画回转器变换","authors":"T. Kagawa, Toshio Suzuki","doi":"10.1080/10652469.2022.2138868","DOIUrl":null,"url":null,"abstract":"ABSTRACT In this note, we will explain the relationship between the fractional Fourier transform and the gyrator transform. In particular, we will show the properties of the gyrator transform, which is getting the eigenfunction and eigenvalue of the gyrator transform, recursion formula, the relation between the Wigner distribution and the gyrator transform, the differential equation satisfied with the gyrator transform of some functions, and the representation of the gyrator transform as the self-adjoint operator. Moreover, we will consider the generalized gyrator transform of tempered distributions.","PeriodicalId":54972,"journal":{"name":"Integral Transforms and Special Functions","volume":"34 1","pages":"399 - 413"},"PeriodicalIF":0.7000,"publicationDate":"2022-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterizations of the gyrator transform via the fractional Fourier transform\",\"authors\":\"T. Kagawa, Toshio Suzuki\",\"doi\":\"10.1080/10652469.2022.2138868\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT In this note, we will explain the relationship between the fractional Fourier transform and the gyrator transform. In particular, we will show the properties of the gyrator transform, which is getting the eigenfunction and eigenvalue of the gyrator transform, recursion formula, the relation between the Wigner distribution and the gyrator transform, the differential equation satisfied with the gyrator transform of some functions, and the representation of the gyrator transform as the self-adjoint operator. Moreover, we will consider the generalized gyrator transform of tempered distributions.\",\"PeriodicalId\":54972,\"journal\":{\"name\":\"Integral Transforms and Special Functions\",\"volume\":\"34 1\",\"pages\":\"399 - 413\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2022-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Integral Transforms and Special Functions\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/10652469.2022.2138868\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Integral Transforms and Special Functions","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/10652469.2022.2138868","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Characterizations of the gyrator transform via the fractional Fourier transform
ABSTRACT In this note, we will explain the relationship between the fractional Fourier transform and the gyrator transform. In particular, we will show the properties of the gyrator transform, which is getting the eigenfunction and eigenvalue of the gyrator transform, recursion formula, the relation between the Wigner distribution and the gyrator transform, the differential equation satisfied with the gyrator transform of some functions, and the representation of the gyrator transform as the self-adjoint operator. Moreover, we will consider the generalized gyrator transform of tempered distributions.
期刊介绍:
Integral Transforms and Special Functions belongs to the basic subjects of mathematical analysis, the theory of differential and integral equations, approximation theory, and to many other areas of pure and applied mathematics. Although centuries old, these subjects are under intense development, for use in pure and applied mathematics, physics, engineering and computer science. This stimulates continuous interest for researchers in these fields. The aim of Integral Transforms and Special Functions is to foster further growth by providing a means for the publication of important research on all aspects of the subjects.