{"title":"一致性g指数的统计推断","authors":"D. Bonett","doi":"10.3102/10769986221088561","DOIUrl":null,"url":null,"abstract":"The limitations of Cohen’s κ are reviewed and an alternative G-index is recommended for assessing nominal-scale agreement. Maximum likelihood estimates, standard errors, and confidence intervals for a two-rater G-index are derived for one-group and two-group designs. A new G-index of agreement for multirater designs is proposed. Statistical inference methods for some important special cases of the multirater design also are derived. G-index meta-analysis methods are proposed and can be used to combine and compare agreement across two or more populations. Closed-form sample-size formulas to achieve desired confidence interval precision are proposed for two-rater and multirater designs. R functions are given for all results.","PeriodicalId":48001,"journal":{"name":"Journal of Educational and Behavioral Statistics","volume":"47 1","pages":"438 - 458"},"PeriodicalIF":1.9000,"publicationDate":"2022-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Statistical Inference for G-indices of Agreement\",\"authors\":\"D. Bonett\",\"doi\":\"10.3102/10769986221088561\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The limitations of Cohen’s κ are reviewed and an alternative G-index is recommended for assessing nominal-scale agreement. Maximum likelihood estimates, standard errors, and confidence intervals for a two-rater G-index are derived for one-group and two-group designs. A new G-index of agreement for multirater designs is proposed. Statistical inference methods for some important special cases of the multirater design also are derived. G-index meta-analysis methods are proposed and can be used to combine and compare agreement across two or more populations. Closed-form sample-size formulas to achieve desired confidence interval precision are proposed for two-rater and multirater designs. R functions are given for all results.\",\"PeriodicalId\":48001,\"journal\":{\"name\":\"Journal of Educational and Behavioral Statistics\",\"volume\":\"47 1\",\"pages\":\"438 - 458\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2022-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Educational and Behavioral Statistics\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.3102/10769986221088561\",\"RegionNum\":3,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"EDUCATION & EDUCATIONAL RESEARCH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Educational and Behavioral Statistics","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.3102/10769986221088561","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"EDUCATION & EDUCATIONAL RESEARCH","Score":null,"Total":0}
The limitations of Cohen’s κ are reviewed and an alternative G-index is recommended for assessing nominal-scale agreement. Maximum likelihood estimates, standard errors, and confidence intervals for a two-rater G-index are derived for one-group and two-group designs. A new G-index of agreement for multirater designs is proposed. Statistical inference methods for some important special cases of the multirater design also are derived. G-index meta-analysis methods are proposed and can be used to combine and compare agreement across two or more populations. Closed-form sample-size formulas to achieve desired confidence interval precision are proposed for two-rater and multirater designs. R functions are given for all results.
期刊介绍:
Journal of Educational and Behavioral Statistics, sponsored jointly by the American Educational Research Association and the American Statistical Association, publishes articles that are original and provide methods that are useful to those studying problems and issues in educational or behavioral research. Typical papers introduce new methods of analysis. Critical reviews of current practice, tutorial presentations of less well known methods, and novel applications of already-known methods are also of interest. Papers discussing statistical techniques without specific educational or behavioral interest or focusing on substantive results without developing new statistical methods or models or making novel use of existing methods have lower priority. Simulation studies, either to demonstrate properties of an existing method or to compare several existing methods (without providing a new method), also have low priority. The Journal of Educational and Behavioral Statistics provides an outlet for papers that are original and provide methods that are useful to those studying problems and issues in educational or behavioral research. Typical papers introduce new methods of analysis, provide properties of these methods, and an example of use in education or behavioral research. Critical reviews of current practice, tutorial presentations of less well known methods, and novel applications of already-known methods are also sometimes accepted. Papers discussing statistical techniques without specific educational or behavioral interest or focusing on substantive results without developing new statistical methods or models or making novel use of existing methods have lower priority. Simulation studies, either to demonstrate properties of an existing method or to compare several existing methods (without providing a new method), also have low priority.