{"title":"√3√5√7是无理数的几何证明","authors":"R. Podestá","doi":"10.1080/0025570X.2023.2168436","DOIUrl":null,"url":null,"abstract":"Summary We give a geometric proof that is irrational for n = 3, 5, 7 by adapting Tennenbaum’s geometric proof that is irrational. We also show that this method cannot be used to prove the irrationality of for a bigger n.","PeriodicalId":18344,"journal":{"name":"Mathematics Magazine","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Geometric Proofs that √3, √5 and √7 are Irrational\",\"authors\":\"R. Podestá\",\"doi\":\"10.1080/0025570X.2023.2168436\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Summary We give a geometric proof that is irrational for n = 3, 5, 7 by adapting Tennenbaum’s geometric proof that is irrational. We also show that this method cannot be used to prove the irrationality of for a bigger n.\",\"PeriodicalId\":18344,\"journal\":{\"name\":\"Mathematics Magazine\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematics Magazine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/0025570X.2023.2168436\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics Magazine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/0025570X.2023.2168436","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
Geometric Proofs that √3, √5 and √7 are Irrational
Summary We give a geometric proof that is irrational for n = 3, 5, 7 by adapting Tennenbaum’s geometric proof that is irrational. We also show that this method cannot be used to prove the irrationality of for a bigger n.