加权韦尔高度的诺斯科特数

IF 0.6 4区 数学 Q3 MATHEMATICS
Masao Okazaki, K. Sano
{"title":"加权韦尔高度的诺斯科特数","authors":"Masao Okazaki, K. Sano","doi":"10.4171/rlm/1000","DOIUrl":null,"url":null,"abstract":"We answer the question of Vidaux and Videla about the distribution of the Northcott numbers for the Weil height. We solve the same problem for the weighted Weil heights. These heights generalize both the absolute and relative Weil height. Our results also refine those of Pazuki, Technau, and Widmer.","PeriodicalId":54497,"journal":{"name":"Rendiconti Lincei-Matematica e Applicazioni","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2022-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Northcott numbers for the weighted Weil heights\",\"authors\":\"Masao Okazaki, K. Sano\",\"doi\":\"10.4171/rlm/1000\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We answer the question of Vidaux and Videla about the distribution of the Northcott numbers for the Weil height. We solve the same problem for the weighted Weil heights. These heights generalize both the absolute and relative Weil height. Our results also refine those of Pazuki, Technau, and Widmer.\",\"PeriodicalId\":54497,\"journal\":{\"name\":\"Rendiconti Lincei-Matematica e Applicazioni\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2022-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Rendiconti Lincei-Matematica e Applicazioni\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/rlm/1000\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rendiconti Lincei-Matematica e Applicazioni","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/rlm/1000","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

摘要

我们回答了Vidaux和Videla关于Weil高度的Northcott数分布的问题。对于加权Weil高度,我们也解决了同样的问题。这些高度概括了绝对和相对威尔高度。我们的结果也完善了帕祖基、特奇诺和威德默的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Northcott numbers for the weighted Weil heights
We answer the question of Vidaux and Videla about the distribution of the Northcott numbers for the Weil height. We solve the same problem for the weighted Weil heights. These heights generalize both the absolute and relative Weil height. Our results also refine those of Pazuki, Technau, and Widmer.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Rendiconti Lincei-Matematica e Applicazioni
Rendiconti Lincei-Matematica e Applicazioni MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
1.30
自引率
0.00%
发文量
27
审稿时长
>12 weeks
期刊介绍: The journal is dedicated to the publication of high-quality peer-reviewed surveys, research papers and preliminary announcements of important results from all fields of mathematics and its applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信