部分数据下分数阶电导率逆问题唯一性的反例

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
J. Railo, Philipp Zimmermann
{"title":"部分数据下分数阶电导率逆问题唯一性的反例","authors":"J. Railo, Philipp Zimmermann","doi":"10.3934/ipi.2022048","DOIUrl":null,"url":null,"abstract":"<p style='text-indent:20px;'>We construct counterexamples for the partial data inverse problem for the fractional conductivity equation in all dimensions on general bounded open sets. In particular, we show that for any bounded domain <inline-formula><tex-math id=\"M1\">\\begin{document}$ \\Omega \\subset {\\mathbb R}^n $\\end{document}</tex-math></inline-formula> and any disjoint open sets <inline-formula><tex-math id=\"M2\">\\begin{document}$ W_1, W_2 \\Subset {\\mathbb R}^n \\setminus \\overline{\\Omega} $\\end{document}</tex-math></inline-formula> there always exist two positive, bounded, smooth, conductivities <inline-formula><tex-math id=\"M3\">\\begin{document}$ \\gamma_1, \\gamma_2 $\\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id=\"M4\">\\begin{document}$ \\gamma_1 \\neq \\gamma_2 $\\end{document}</tex-math></inline-formula>, with equal partial exterior Dirichlet-to-Neumann maps <inline-formula><tex-math id=\"M5\">\\begin{document}$ \\Lambda_{\\gamma_1}f|_{W_2} = \\Lambda_{\\gamma_2}f|_{W_2} $\\end{document}</tex-math></inline-formula> for all <inline-formula><tex-math id=\"M6\">\\begin{document}$ f \\in C_c^{\\infty}(W_1) $\\end{document}</tex-math></inline-formula>. The proof uses the characterization of equal exterior data from another work of the authors in combination with the maximum principle of fractional Laplacians. The main technical difficulty arises from the requirement that the conductivities should be strictly positive and have a special regularity property <inline-formula><tex-math id=\"M7\">\\begin{document}$ \\gamma_i^{1/2}-1 \\in H^{2s, \\frac{n}{2s}}( {\\mathbb R}^n) $\\end{document}</tex-math></inline-formula> for <inline-formula><tex-math id=\"M8\">\\begin{document}$ i = 1, 2 $\\end{document}</tex-math></inline-formula>. We also provide counterexamples on domains that are bounded in one direction when <inline-formula><tex-math id=\"M9\">\\begin{document}$ n \\geq 4 $\\end{document}</tex-math></inline-formula> or <inline-formula><tex-math id=\"M10\">\\begin{document}$ s \\in (0, n/4] $\\end{document}</tex-math></inline-formula> when <inline-formula><tex-math id=\"M11\">\\begin{document}$ n = 2, 3 $\\end{document}</tex-math></inline-formula> using a modification of the argument on bounded domains.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Counterexamples to uniqueness in the inverse fractional conductivity problem with partial data\",\"authors\":\"J. Railo, Philipp Zimmermann\",\"doi\":\"10.3934/ipi.2022048\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p style='text-indent:20px;'>We construct counterexamples for the partial data inverse problem for the fractional conductivity equation in all dimensions on general bounded open sets. In particular, we show that for any bounded domain <inline-formula><tex-math id=\\\"M1\\\">\\\\begin{document}$ \\\\Omega \\\\subset {\\\\mathbb R}^n $\\\\end{document}</tex-math></inline-formula> and any disjoint open sets <inline-formula><tex-math id=\\\"M2\\\">\\\\begin{document}$ W_1, W_2 \\\\Subset {\\\\mathbb R}^n \\\\setminus \\\\overline{\\\\Omega} $\\\\end{document}</tex-math></inline-formula> there always exist two positive, bounded, smooth, conductivities <inline-formula><tex-math id=\\\"M3\\\">\\\\begin{document}$ \\\\gamma_1, \\\\gamma_2 $\\\\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id=\\\"M4\\\">\\\\begin{document}$ \\\\gamma_1 \\\\neq \\\\gamma_2 $\\\\end{document}</tex-math></inline-formula>, with equal partial exterior Dirichlet-to-Neumann maps <inline-formula><tex-math id=\\\"M5\\\">\\\\begin{document}$ \\\\Lambda_{\\\\gamma_1}f|_{W_2} = \\\\Lambda_{\\\\gamma_2}f|_{W_2} $\\\\end{document}</tex-math></inline-formula> for all <inline-formula><tex-math id=\\\"M6\\\">\\\\begin{document}$ f \\\\in C_c^{\\\\infty}(W_1) $\\\\end{document}</tex-math></inline-formula>. The proof uses the characterization of equal exterior data from another work of the authors in combination with the maximum principle of fractional Laplacians. The main technical difficulty arises from the requirement that the conductivities should be strictly positive and have a special regularity property <inline-formula><tex-math id=\\\"M7\\\">\\\\begin{document}$ \\\\gamma_i^{1/2}-1 \\\\in H^{2s, \\\\frac{n}{2s}}( {\\\\mathbb R}^n) $\\\\end{document}</tex-math></inline-formula> for <inline-formula><tex-math id=\\\"M8\\\">\\\\begin{document}$ i = 1, 2 $\\\\end{document}</tex-math></inline-formula>. We also provide counterexamples on domains that are bounded in one direction when <inline-formula><tex-math id=\\\"M9\\\">\\\\begin{document}$ n \\\\geq 4 $\\\\end{document}</tex-math></inline-formula> or <inline-formula><tex-math id=\\\"M10\\\">\\\\begin{document}$ s \\\\in (0, n/4] $\\\\end{document}</tex-math></inline-formula> when <inline-formula><tex-math id=\\\"M11\\\">\\\\begin{document}$ n = 2, 3 $\\\\end{document}</tex-math></inline-formula> using a modification of the argument on bounded domains.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3934/ipi.2022048\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/ipi.2022048","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 11

摘要

We construct counterexamples for the partial data inverse problem for the fractional conductivity equation in all dimensions on general bounded open sets. In particular, we show that for any bounded domain \begin{document}$ \Omega \subset {\mathbb R}^n $\end{document} and any disjoint open sets \begin{document}$ W_1, W_2 \Subset {\mathbb R}^n \setminus \overline{\Omega} $\end{document} there always exist two positive, bounded, smooth, conductivities \begin{document}$ \gamma_1, \gamma_2 $\end{document}, \begin{document}$ \gamma_1 \neq \gamma_2 $\end{document}, with equal partial exterior Dirichlet-to-Neumann maps \begin{document}$ \Lambda_{\gamma_1}f|_{W_2} = \Lambda_{\gamma_2}f|_{W_2} $\end{document} for all \begin{document}$ f \in C_c^{\infty}(W_1) $\end{document}. The proof uses the characterization of equal exterior data from another work of the authors in combination with the maximum principle of fractional Laplacians. The main technical difficulty arises from the requirement that the conductivities should be strictly positive and have a special regularity property \begin{document}$ \gamma_i^{1/2}-1 \in H^{2s, \frac{n}{2s}}( {\mathbb R}^n) $\end{document} for \begin{document}$ i = 1, 2 $\end{document}. We also provide counterexamples on domains that are bounded in one direction when \begin{document}$ n \geq 4 $\end{document} or \begin{document}$ s \in (0, n/4] $\end{document} when \begin{document}$ n = 2, 3 $\end{document} using a modification of the argument on bounded domains.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Counterexamples to uniqueness in the inverse fractional conductivity problem with partial data

We construct counterexamples for the partial data inverse problem for the fractional conductivity equation in all dimensions on general bounded open sets. In particular, we show that for any bounded domain \begin{document}$ \Omega \subset {\mathbb R}^n $\end{document} and any disjoint open sets \begin{document}$ W_1, W_2 \Subset {\mathbb R}^n \setminus \overline{\Omega} $\end{document} there always exist two positive, bounded, smooth, conductivities \begin{document}$ \gamma_1, \gamma_2 $\end{document}, \begin{document}$ \gamma_1 \neq \gamma_2 $\end{document}, with equal partial exterior Dirichlet-to-Neumann maps \begin{document}$ \Lambda_{\gamma_1}f|_{W_2} = \Lambda_{\gamma_2}f|_{W_2} $\end{document} for all \begin{document}$ f \in C_c^{\infty}(W_1) $\end{document}. The proof uses the characterization of equal exterior data from another work of the authors in combination with the maximum principle of fractional Laplacians. The main technical difficulty arises from the requirement that the conductivities should be strictly positive and have a special regularity property \begin{document}$ \gamma_i^{1/2}-1 \in H^{2s, \frac{n}{2s}}( {\mathbb R}^n) $\end{document} for \begin{document}$ i = 1, 2 $\end{document}. We also provide counterexamples on domains that are bounded in one direction when \begin{document}$ n \geq 4 $\end{document} or \begin{document}$ s \in (0, n/4] $\end{document} when \begin{document}$ n = 2, 3 $\end{document} using a modification of the argument on bounded domains.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信