次线性期望条件下行扩展负相依随机变量阵列的完全收敛定理

IF 0.6 4区 数学 Q4 STATISTICS & PROBABILITY
Rong Hu, Qunying Wu
{"title":"次线性期望条件下行扩展负相依随机变量阵列的完全收敛定理","authors":"Rong Hu, Qunying Wu","doi":"10.1080/03610926.2022.2051050","DOIUrl":null,"url":null,"abstract":"Abstract The goal of this paper is to establish complete convergence theorems for an array of row-wise END random variables under sub-linear expectation space. As applications of the exponential inequalities, we extend some complete convergence theorems from the traditional probability space to the sub-linear expectation space and our results generalize corresponding results obtained by Hu.","PeriodicalId":10531,"journal":{"name":"Communications in Statistics - Theory and Methods","volume":"52 1","pages":"7669 - 7683"},"PeriodicalIF":0.6000,"publicationDate":"2023-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Complete convergence theorems for arrays of row-wise extended negatively dependent random variables under sub-linear expectations\",\"authors\":\"Rong Hu, Qunying Wu\",\"doi\":\"10.1080/03610926.2022.2051050\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The goal of this paper is to establish complete convergence theorems for an array of row-wise END random variables under sub-linear expectation space. As applications of the exponential inequalities, we extend some complete convergence theorems from the traditional probability space to the sub-linear expectation space and our results generalize corresponding results obtained by Hu.\",\"PeriodicalId\":10531,\"journal\":{\"name\":\"Communications in Statistics - Theory and Methods\",\"volume\":\"52 1\",\"pages\":\"7669 - 7683\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Statistics - Theory and Methods\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/03610926.2022.2051050\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Statistics - Theory and Methods","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/03610926.2022.2051050","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

摘要本文的目的是在次线性期望空间下,建立一组逐行END随机变量的完全收敛定理。作为指数不等式的应用,我们将一些完全收敛定理从传统的概率空间推广到次线性期望空间,我们的结果推广了Hu的相应结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Complete convergence theorems for arrays of row-wise extended negatively dependent random variables under sub-linear expectations
Abstract The goal of this paper is to establish complete convergence theorems for an array of row-wise END random variables under sub-linear expectation space. As applications of the exponential inequalities, we extend some complete convergence theorems from the traditional probability space to the sub-linear expectation space and our results generalize corresponding results obtained by Hu.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
12.50%
发文量
320
审稿时长
7.5 months
期刊介绍: The Theory and Methods series intends to publish papers that make theoretical and methodological advances in Probability and Statistics. New applications of statistical and probabilistic methods will also be considered for publication. In addition, special issues dedicated to a specific topic of current interest will also be published in this series periodically, providing an exhaustive and up-to-date review of that topic to the readership.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信